K.S.Rangasamy College of Technology

(Autonomous)

Curriculum & Syllabus of

M.E. VLSI Design

(Batch admitted in 2025 - 2026)

R 2025

Accredited by NAAC with 'A++' Grade, Approved by AICTE, Affiliated to Anna University, Chennai.

KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

M.E. VLSI Design

Vision

To become recognized as a leader in Electronics and Communication Engineering education and research **Mission**

- To craft professionals and technology leaders adherent to the professional ethical code in the areas of Electronics and communication Engineering
- To address the needs of the society while advancing boundaries of disciplinary and multidisciplinary research and cultivate universal moral values

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** To develop a progressive career in research and industry with the ability to analyse, design and fabricate Integrated Circuits.
- **PEO2:** To gain a firm grasp on growing areas of VLSI with acquired knowledge on concepts and use of appropriate tools
- **PEO3:** To exhibit ethical practices and social behavior with an attitude of lifelong learning and strong communication skills

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- PO1: An ability to independently carry out research /investigation and development work to solve practical problems
- PO2: An ability to write and present a substantial technical report/document
- PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program
- PO4: An ability to identify appropriate EDA tool for design and analysis of Integrated Circuits
- PO5: An ability to communicate effectively and solve societal problems with ethical principles
- PO6: An ability to apply the knowledge of VLSI concepts in the design and development of Integrated Circuits

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMME OUTCOMES (POs)

The M.E. VLSI Design Programme outcomes leading to the achievement of the objectives are summarized in the following Table.

Programme	Programme Outcomes										
Educational Objectives	PO1	PO2	PO3	PO4	PO5	PO6					
PEO 1	3	3	3	3	3	2					
PEO 2	3	3	3	3	3	3					
PEO 3	2	2	2	2	2	3					

Contributions: 1-low, 2-medium, 3-high

MAPPING: VLSI DESIGN (PG)

YEAR	SEM	COURSE CODE	COURSE NAME	PO1	PO2	PO3	PO4	PO5	PO6
		70 PVL 101	Linear Algebra and Graph Theory	3	3			2	2.4
		70 PIS 001/ 70 PSE 001	Research Methodology and IPR	3	3	2	2	2	2
		70 PVL 102	Analog IC Design	3	3	3	2	2	3
		70 PVL 103	Digital IC Design	3	3	3	2	2	3
	ı	70 PVL 104	Advanced Digital System Design Professional Elective I	3	3	3	3	3	3
		70 PVL E1*							
		70 PAC 001	English for Research Paper Writing	3	3	2	3	3	3
		70 PVL 1P1	VLSI Laboratory I	3	3	3	2	2	3
I		70 PVL 1P2	Analog IC Design Laboratory	3	3	3	3	2	3
		70 PVL 201	Solid State device Modelling and Simulation	3	3	3	3	2	3
		70 PVL 202	VLSI Design	વ	3	26	24	2.6	26
		70 PVL 203	VLSI Testing	3	2.8	2.8	2.8	2.8	3
		70 PVL 204	ASIC Design	2.6	2	3	2.5	2.5	3
	II	70 PVL E2*	Professional Elective II						
		70 PVL E3*	Professional Elective III						
		70 PAC 002	Disaster Management	3	3	3		3	
		70 PVL 2P1	VLSI Laboratory II	3		3	3	3	3
		70 PVL 2P2	Term Paper and Seminar	3	2.75	3	2.4	2.75	3
		70 PVL 301	Electronic Packaging	3	3	3	2	2	3
	Ш	70 PVL E4*	Professional Elective IV				_		
II		70 PVL E5*	Professional Elective V						
		70 PVL 3P1	Project Work Phase I	3	3	3	3	3	3
	IV	70 PVL 4P1	Project Work Phase II	3	3	3	3	3	3

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangaeamy College of Technology,
Tiruchengode - 637 215.

Passed in BoS Meeting held on 13/06/2025 Approved in Academic Council Meeting held on 19/07/2025

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215

(An Autonomous Institution affiliated to Anna University)

PROFESSIONAL CORE (PC)

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	70 PVL 101	Linear Algebra and Graph Theory	PC	5	3	1	0	4	Discrete Mathematics
2.	70 PIS 001/ 70 PSE 001	Research Methodology and IPR	RM	3	3	0	0	3	Nil
3.	70 PVL 102	Analog IC Design	PC	3	3	0	0	3	Courses on Semiconductor Devices and Circuits and Linear IC Applications at UG Level
4.	70 PVL 103	Digital IC Design	PC	3	3	0	0	3	Digital logic design, VLSI Design
5.	70 PVL 104	Advanced Digital System Design	PC	5	3	1	0	4	Digital Logic Design
6.	70 PVL 1P1	VLSI Laboratory I	PC	4	0	0	4	2	Analog and Digital CMOS VLSI design
7.	70 PVL1P2	Analog IC Design Laboratory	PC	4	0	0	4	2	Courses on Semiconductor Devices and Circuits and Linear IC Applications at UG Level
8.	70 PVL 201	Solid State device Modelling and Simulation	PC	3	3	0	0	3	Semiconductor devices and circuits
9.	70 PVL 202	VLSI Design Automation	PC	3	3	0	0	3	Analog and Digital CMOS VLSI design
10.	70 PVL 203	VLSI Testing	PC	3	3	0	0	3	Analog and Digital CMOS VLSI design
11.	70 PVL 204	ASIC Design	PC	3	3	0	0	3	Digital Logic Design
12.	70 PVL 2P1	VLSI Laboratory II	PC	4	0	0	4	2	Basic Verilog HDL
13.	70 PVL 301	Electronic Packaging	PC	3	3	0	0	3	Electronic Circuits and Embedded Systems

Passed in BoS Meeting held on 13/06/2025 Approved in Academic Council Meeting held on 19/07/2025

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangaaamy College of Technology,
Tiruchengode - 637 215.

PROFESSIONAL ELECTIVE (PE)

SEMESTER I, PROFESSIONAL

ELECTIVE I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	70 PVL E11	System Design with FPGA	PE	3	3	0	0	3	Digital system Design
2.	70 PVL E12	Advanced Computer Architecture	PE	3	3	0	0	3	Nil
3.	70 PVL E13	VLSI Digital Signal Processing	PE	3	3	0	0	3	Nil
4.	70 PVL E14	Machine Learning in VLSI Design	PE	3	3	0	0	3	Nil
5.	70 PVL E15	VLSI Technology	PE	3	3	0	0	3	Nil

SEMESTER II, PROFESSIONAL ELECTIVE II

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	70 PVL E21	Low Power VLSI Design	PE	3	3	0	0	3	Analog and Digital CMOS VLSI design
2.	70 PVL E22	Digital image Processing	PE	3	3	0	0	3	Image Processing
3.	70 PVL E23	IP Based VLSI Design	PE	3	3	0	0	3	Digital CMOS VLSI Design
4.	70 PVL E24	Genetic Algorithm for VLSI Design	PE	3	3	0	0	3	Nil
5.	70 PVL E25	Bio Signal Processing	PE	3	3	0	0	3	Digital Signal Processing

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

SEMESTER II, PROFESSIONAL ELECTIVE III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	70 PVL E31	VLSI for Wireless Communication	PE	3	3	0	0	3	Fundamentals of VLSI and Wireless Communication
2.	70 PVL E32	System on Chip	PE	3	3	0	0	3	Nil
3.	70 PVL E33	Design for Verification using UVM	PE	3	3	0	0	3	System Verilog
4.	70 PVL E34	FPGA Based Implementation of Signal Processing Systems	PE	3	3	0	0	3	Digital Logic Design and Digital Signal processing
5.	70 PVL E35	Wireless Sensor Networks	PE	3	3	0	0	3	Nil

SEMESTER III, PROFESSIONAL ELECTIVE IV

S.No.	Course Code	Course Title	Category	Contact Periods		Т	Р	С	Prerequisite
1.	70 PVL E41	DSP Structures for VLSI	PE	3	3	0	0	3	Signal Processing
2.	70 PVL E42	Applied Medical Image Processing	PE	3	3	0	0	3	Nil
3.	70 PVL E43	Data Science and Engineering	PE	3	3	0	0	3	Nil
4.	70 PVL E44	Data Converters IC Design	PE	3	3	0	0	3	Nil
5.	70 PVL E45	Mixed Signal VLSI design	PE	3	3	0	0	3	Nil

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangaaamy College of Technology,
Tiruchengode - 637 215.

SEMESTER III, PROFESSIONAL ELECTIVE V

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	70 PVL E51	System Verilog	PE	5	3	0	2	4	Verilog HDL
2.	70 PVL E52	HDL for IC Design	PE	5	3	0	2	4	Digital System Design, Verilog HDL
3.	70 PVL E53	Deep Learning	PE	5	3	0	2	4	Machine Learning Techniques
4.	70 PVL E54	Adaptive Signal Processing	PE	5	3	0	2	4	Digital Signal processing
5.	70 PVL E55	MEMS System Design	PE	5	3	0	2	4	Electronic Circuits

RESEARCH METHODOLOGY (RM)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	70 PIS 001/ 70 PSE 001	Research Methodology and IPR	RM	3	3	0	0	3	Nil

AUDIT COURSES (I/II) (AC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	70 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0	Nil
2	70 PAC 002	Disaster Management	AC	2	2	0	0	0	Nil

CAREER GUIDANCE COURSES (CG)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Prerequisite
1.	70 PVL 2P2	Term Paper and Seminar	CG	2	0	0	2	0	Nil
2.	70 PVL 3P1	Project Work - Phase I	CG	12	0	0	12	6	Nil
4.	70 PVL 4P1	Project Work - Phase II	CG	24	0	0	24	12	Nil

SUMMARY

			Credits pe	Credits per semester		Total	
S.No.	Category	I	II	III	IV	Credits	Percentage%
1.	PC	21	14	3	=	38	52.78
2.	PE	-	6	7	-	13	18.06
3.	RM	3	-	-	-	03	4.17
4.	CG	-	-	6	12	18	25.00
5.	AC	AC I	AC II	-	-	-	-
T	otal	24	20	16	12	72	100

Passed in BoS Meeting held on 13/06/2025 Approved in Academic Council Meeting held on 19/07/2025

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangagamy College of Technology,
Tiruchengode - 637 215.

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215

(An Autonomous Institution affiliated to Anna University)

SEMESTER I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY					·	
1.	70 PVL 101	Linear Algebra and Graph Theory	PC	5	3	1	0	4
2.	70 PIS 001/ 70 PSE 001	Research Methodology and IPR	RM	3	3	0	0	3
3.	70 PVL 102	Analog IC Design	PC	3	3	0	0	3
4.	70 PVL 103	Digital IC Design	PC	3	3	0	0	3
5.	70 PVL 104	Advanced Digital System Design	PC	5	3	1	0	4
6.	70 PVL E1*	Professional Elective I	PE	3	3	0	0	3
7.	70 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0
		PRACTICALS	1		•			
8.	70 PVL 1P1	VLSI Laboratory I	PC	4	0	0	4	2
9.	70 PVL 1P2	Analog IC Design Laboratory	PC	4	0	0	4	2
			TOTAL	32	20	2	8	24

SEMESTER II

	33									
S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С		
		THEORY								
1.	70 PVL 201	Solid State device Modelling and Simulation	PC	3	3	0	0	3		
2.	70 PVL 202	VLSI Design Automation	PC	3	3	0	0	3		
3.	70 PVL 203	VLSI Testing	PC	3	3	0	0	3		
4.	70 PVL 204	ASIC Design	PC	3	3	0	0	3		
5.	70 PVL E2*	Professional Elective II	PE	3	3	0	0	3		
6.	70 PVL E3*	Professional Elective III	PE	3	3	0	0	3		
7.	70 PAC 002	Disaster Management	AC	2	2	0	0	0		
		PRACTICALS								
8.	70 PVL 2P1	VLSI Laboratory II	PC	4	0	0	4	2		
9.	70 PVL 2P2	Term Paper and Seminar	CG	2	0	0	2	0		
			TOTAL	26	20	0	6	20		

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangaamy College of Technology,
Tiruchengode - 637 215.

SEMESTER III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С		
		THEORY	•							
1.	70 PVL 301	Electronic Packaging	PC	3	3	0	0	3		
2.	70 PVL E4*	Professional Elective IV	PE	3	3	0	0	3		
3.	70 PVL E5*	Professional Elective V	PE	5	3	0	2	4		
	PRACTICALS									
1	70 PV/L 3P1	Project Work - Phase I	CG	12	Λ	0	12	6		

4.	70 PVL 3P1	Project Work - Phase I	CG	12	0	0	12	6
			TOTAL	23	9	0	14	16

SEMESTER IV

S.No.	Course Code	Category	Contact Periods	L	T	Р	С			
	PRACTICALS									
1.	70 PVL 4P1	Project Work - Phase II	CG	24	0	0	24	12		
			TOTAL	24	0	0	24	12		

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE: 72

Note: PC-Professional Core Courses, PE-Professional Elective Courses, RM- Research Methodology, CG -Career Guidance Courses, AC- Audit Courses

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215 (An Autonomous Institution affiliated to Anna University)

M.E. / M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted in 2025-2026)

FIRST SEMESTER

S.No	Course	Name of the	Duration of	Il Continuous End			Minimum N for Pass in Semesto Exam	End
3.110	Code	Course	Internal Exam	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total
			TH	EORY				
1.	70 PVL 101	Linear Algebra and Graph Theory	2	40	60	100	45	100
2.	70 PIS 001/ 70 PSE 001	Research Methodology and IPR	2	40	60	100	45	100
3.	70 PVL 102	Analog IC Design	2	40	60	100	45	100
4.	70 PVL 103	Digital IC Design	2	40	60	100	45	100
5.	70 PVL 104	Advanced Digital System Design	2	40	60	100	45	100
6.	70 PVL E1*	Professional Elective	2	40	60	100	45	100
7.	70 PAC 001	English for Research Paper Writing	2	100	-	100	-	100
			PRA	CTICAL	<u> </u>			
9.	70 PVL 1P1	VLSI Laboratory I	3	60	40	100	45	100
10.	70 PVL 1P2	Analog IC Design Laboratory	3	60	40	100	45	100

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

^{**} End semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for theory End Semester Examination and 40 marks for practical End semester Examination.

70 PVL 101	Linear Algebra and	Category	L	Т	Р	Credit
70 F V L 101	Graph Theory	PC	3	1	0	4

- To introduce the concepts of matrix decomposition.
- To know and apply the fundamental concepts in graph theory.
- To learn the model problems using graphs and to solve these problems algorithmically.
- To expose the concepts of modeling and optimization for solving real world problems
- To analyze and solve network models arising from a wide range of applications.

Pre-requisites

Discrete Mathematics

Course Outcomes

On the successful completion of the course, students will be able to

011 1110 00	deceding completion of the decise, stadente will be able to	
CO1	Understand the concept of different decomposition	Apply
CO2	Know the basic terminology and some of the theory associated with graphs	Apply
CO3	Formulate graph theoretic models to solve real world problems	Apply
CO4	Explain the linear programming principles and its conversion.	Apply
CO5	Apply CPM and PERT techniques to control project activities and costs	Apply

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	-	-	2	3			
CO2	3	3	-	-	2	3			
CO3	3	3	-	-	2	2			
CO4	3	3	-	-	2	2			
CO5	3	3	-	-	2	2			
3 - St	rong; 2	2 - Med	lium; 1	- Some	е				

Bloom's	Continuous Assess	ment Tests (Marks)	End Sem
Category	1	2	Examination (Marks)
Remember	14	6	10
Understand	14	6	10
Apply	32	48	80
Analyse	-	-	-
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

CHAIRMAN BOARD OF STUDIES

Syllabus								
	K.S.	.Rangasam				omous R2	2025	
		70 PVI		-VLSI Desi ır Algebra a		Theory		
	ŀ	Hours/Week		Total	Credit		aximum Maı	·ks
Semester	L	Т	<u>-</u> Р	Hours	С	CA	ES	Total
I	3	1	0	60	4	40	60	100
		omposition - analysis.	QR decom	position — S	Singular valı	ue decomp	osition —	[9]
Induced sul Path- Conn Partition- In Diagraphs-	graph — Do b graphs - C ectivity — Ed dependent Weekly cor oh- Adjacen	egree of a v Complement ccentricity – set - Clique nnected digr ncy matrix -	t of a graph Radius – [. Digraph – aphs - Unil	- Self comp Diameter - V - Orientatio aterally con	olementary ′ertex and e n- Strongly nected digr	graphs– Wedge cuts- \ connected aphs- Dire	/alk Vertex cted	[9]
Kruskal's a Perfect ma cut and ma	orithms – D nd Prim's si tching, Bipa x-cut algori	epth first se hortest path artite matchi thms.	algorithm-	Dijkstra's ar	nd Floyd-Ma	arshall. Ma	tching-	[9]
Linear Pro Formulation phase meth	of linear p					Simplex me	ethod - Two	[9]
	n - Network od – Proba	and Basic (bility Consid					on – Critical ning / Time-	[9]
					Total Hou	urs: 45 + 1	5(Tutorial)	60
	gh Deo, Gr	aph Theory New York, D				and Compu	ter Science,	Dover
2. KantiS Chanc	warup, P.K & Sons, N	Gupta, Mar ew Delhi, 20	n Mohan, ' (12 th Edition	, Sultan	
Reference	• •							-
1. Gilber	t Strang, Int	roduction to	linear alge	bra, 6 th Edit	ion, ANE B	ooks, 2023	3.	
2. David	C. Lay, 'Lin	ear Algebra	and its App	olications', F	Pearson Ed	ucation, 6 th	edition, 202	1.
3. Hamd	y A Taha, 'C	Operations F	Research. A	n Introduct	ion', Pearso	on Educatio	on, New Delh	ni, 2014.

^{*}SDG 4: Quality education.

^{**}SDG 9: Promote inclusive and sustainable industrialization.

1.2 LU Decomposition 2.1 QR Decomposition 2.2 Singular Value Decomposition 2.3 Singular Value Decomposition 2.4 Singular Value Decomposition 2.5 Principal Component Analysis 2.6 Solving Systems of Linear Equations using the tools of Matrices 2.7 Undirected graph 2.8 Degree of a vertex - Degree sequence 2.9 Sub graphs - Vertex induced sub graphs 2.0 Complement of a graph - Self complementary graphs 2.1 Undirected graph 2.2 Degree of a vertex - Degree sequence 2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2.0 Graph Algorithms 3.1 Search algorithms	_
1.1 Introduction 1.2 LU Decomposition 2.1 A Singular Value Decomposition 2.1 A Singular Value Decomposition 2.1 A Singular Value Decomposition 2.2 Dericipal Component Analysis 2.0 Graph Theory 2.1 Undirected graph 2.2 Degree of a vertex - Degree sequence 2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph - Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 3.0 Graph Algorithms 3.1 Search algorithms	
1.2 LU Decomposition 2.1 1.3 QR Decomposition 2.4 Singular Value Decomposition 2.5 Principal Component Analysis 2.6 Solving Systems of Linear Equations using the tools of Matrices 3.7 Tutorial 3.8 Graph Theory 3.9 Lundirected graph 3.1 Search algorithms 3.2 LU Decomposition 2.2 Decomposition 2.3 Solving Systems of Linear Equations using the tools of Matrices 3.1 Linear Equations using the tools of Matrices 4.2 Complement of Linear Equations using the tools of Matrices 4.2 Linear Equations using the tools of Matrices 4.3 Linear Equations using the tools of Matrices 4.3 Linear Equations using the tools of Matrices 4.3 Linear Equations using the tools of Matrices 4.4 Complement of a graph - Degree sequence 4.5 Sub graphs - Vertex induced sub graphs 4.5 Sub graphs - Vertex induced sub graphs 4.5 Walk - Path - Connectivity - Eccentricity 4.6 Complement of a graph - Self complementary graphs 4.7 Complement of a graph - Self complementary graphs 4.7 Complement of a graph - Self complementary graphs 4.7 Complement of a graph - Self complementary graphs 4.7 Complement of a graph - Self complementary graphs 4.7 Complement of a graph - Self complementary graphs 5. Unidense using the tools of Matrices 5. Linear Equations using	
1.3 QR Decomposition 2 1.4 Singular Value Decomposition 2 1.5 Principal Component Analysis 2 1.6 Solving Systems of Linear Equations using the tools of Matrices 1 1.7 Tutorial 2 2.0 Graph Theory 2.1 Undirected graph 2.2 Degree of a vertex - Degree sequence 2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph - Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 3.0 Graph Algorithms 1	1
1.4 Singular Value Decomposition 2.5 Principal Component Analysis 2.6 Solving Systems of Linear Equations using the tools of Matrices 3.7 Tutorial 3.0 Graph Theory 3.1 Undirected graph 4.2 Degree of a vertex - Degree sequence 5.3 Sub graphs - Vertex induced sub graphs 5.4 Complement of a graph - Self complementary graphs 6.5 Walk - Path - Connectivity - Eccentricity 7.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 7.7 Digraph — Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 7.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 7.9 Tutorial 7.0 Graph Algorithms 7.0 Search algorithms	2
1.5 Principal Component Analysis 2 1.6 Solving Systems of Linear Equations using the tools of Matrices 1 1.7 Tutorial 2 2.0 Graph Theory 2.1 Undirected graph 2.2 Degree of a vertex - Degree sequence 2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 3.0 Graph Algorithms 1	2
1.6 Solving Systems of Linear Equations using the tools of Matrices 1.7 Tutorial 2.0 Graph Theory 2.1 Undirected graph 2.2 Degree of a vertex - Degree sequence 2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2.0 Graph Algorithms 3.1 Search algorithms	2
1.7 Tutorial 2 2.0 Graph Theory 2.1 Undirected graph 1 2.2 Degree of a vertex - Degree sequence 1 2.3 Sub graphs - Vertex induced sub graphs 1 2.4 Complement of a graph - Self complementary graphs 1 2.5 Walk - Path - Connectivity - Eccentricity 1 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2 3.0 Graph Algorithms 1	2
2.0 Graph Theory 2.1 Undirected graph 2.2 Degree of a vertex - Degree sequence 2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2.0 Graph Algorithms 3.1 Search algorithms	1
2.1 Undirected graph 2.2 Degree of a vertex - Degree sequence 2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph - Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2.0 Graph Algorithms 3.1 Search algorithms	2
2.2 Degree of a vertex - Degree sequence 2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2.0 Graph Algorithms 3.1 Search algorithms	
2.3 Sub graphs - Vertex induced sub graphs 2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph - Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2.0 Graph Algorithms 3.1 Search algorithms	1
2.4 Complement of a graph - Self complementary graphs 2.5 Walk - Path - Connectivity - Eccentricity 2.6 Radius - Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation - Strongly connected digraphs - Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2.0 Graph Algorithms 3.1 Search algorithms	1
2.5 Walk – Path – Connectivity – Eccentricity 2.6 Radius – Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation – Strongly connected digraphs – Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2.0 Graph Algorithms 3.1 Search algorithms	1
2.6 Radius – Diameter - Vertex and edge cuts - Vertex partition - Independent set - Clique 2.7 Digraph — Orientation – Strongly connected digraphs – Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2 3.0 Graph Algorithms 3.1 Search algorithms	1
Clique 2.7 Digraph — Orientation – Strongly connected digraphs – Weekly connected digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2 3.0 Graph Algorithms 3.1 Search algorithms	1
digraphs - Unilaterally connected digraphs 2.8 Directed acyclic graph. Adjacency matrix - Incidence matrix of graphs. Trees - Spanning trees - Matrix tree theorem 2.9 Tutorial 2 3.0 Graph Algorithms 3.1 Search algorithms 1	1
Spanning trees - Matrix tree theorem 2.9 Tutorial 2 3.0 Graph Algorithms 3.1 Search algorithms 1	2
3.0 Graph Algorithms 3.1 Search algorithms 1	1
3.1 Search algorithms 1	2
3.2 Depth first search and breadth first search	1
<u> </u>	2
	2
3.4 Kruskal's and Prim's shortest path algorithm	
3.5 Dijkstra's and Floyd-Marshall 2	2
3.6 Matching 1	1
3.7 Perfect matching, Bipartite matching, Flow networks	2
3.8 Augmenting path algorithm - Min-cut and max-cut algorithms	
3.9 Tutorial	
4.0 Linear Programming	
4.1 Formulation of linear programming problem 1	1
4.2 Graphical method 1	1
4.3 Simplex method 2	2
4.4 Two phase method 1	1
4.5 Big M-method 2	2
4.6 Duality	
4.7 Dual simplex method 1	1
4.8 Tutorial 2	2
5.0 Network Analysis	
5.1 Introduction 2	

5.2	Network and Basic Components	1
5.3	Rules of Network Construction	2
5.4	Critical Path Method	2
5.5	Probability Considerations in PERT	1
5.6	Concept of Project Crashing / Time-Cost trade-off.	1
5.7	Tutorial	1

Mrs. D.Padmavathi- padmavathi@ksrct.ac.in

C P R

70 PIS 001/	Research Methodology	Category	L	Т	Р	Credit
70 PSE 001	and IPR	RM	3	0	0	3

- To understand the principles of research process.
- To develop knowledge in analytical skills for collection of research data.
- To understand the procedure in the preparation of reports.
- To accomplish basic idea about the process involved in intellectual property rights.
- To enlighten the process of patent filing.

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To understand the research process and design.	Apply
CO2	To gain the knowledge about sources and collection of research data	Analyse
CO3	To understand the procedure of data analysis, preparation of reports and checking plagiarism	Analyse
CO4	To gain the knowledge on Trade mark and functions of UNESCO in IPR	Apply
CO5	To enlighten the benefits, E-filing and Examinations related to patents	Apply

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	3	2	2	2	2		
CO2	3	3	2	2	2	2		
CO3	3	3	2	2	2	2		
CO4	3	3	2	2	2	2		
CO5	3	3	2	2	2	2		
3 - St	3 - Strong; 2 - Medium; 1 - Some							

Assessment Pattern

Bloom's	Continuous Assess	ment Tests (Marks)	End Sem	
Category	1	2	Examination (Marks)	
Remember	10	10	30	
Understand	20	20	30	
Apply	20	20	30	
Analyse	10	10	10	
Evaluate	-	-	-	
Create	-	-	-	
Total	60	60	100	

Sylla	bus	17.2	<u> </u>					005	
	K.S.Rangasamy College of Technology – Autonomous R2025								
	Common to all Branches 70 PIS 001/70 PSE 001- Research Methodology and IPR								
			Hours/Wee			Credit		x aximum Mar	·kc
Semo	ester		T	P	Total Hours	Credit	CA	ES	Total
	1	3	0	0	45	3	40	60	100
Research Design*									100
Over Answ and S Rese	Overview of Research Process and Design- use of Secondary and Exploratory Data to Answer the Research Question, Qualitative Research, Observation Studies, Experiments and Surveys, Selection of the Right Medium and Journal for Publication, Translation of Research								[9]
Meas Meth	sureme ods. D	ata - Prepa	urement So ring, Explo	cales, Ques ring, Examir			ents, Samı	oling and	[9]
Over Prese	view c enting	Insights and	te Analysi: I Findings ι	s, Hypothes using Written on, and Misi	Reports an	d Oral Pres			[9]
Intelle IPR I WIPC Type	Intellectual Property Rights** Intellectual Property — The Concept of IPR, Evolution and Development of Concept of IPR, IPR Development Process, Trade Secrets, Utility Models, IPR & Bio Diversity, Role of WIPO and WTO in IPR Establishments, Right of Property, Common Rules of IPR Practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR Maintenance.							[9]	
Pater Spec of Pa	Patents Patents – Objectives and Benefits of Patent, Concept, Features of Patent, Inventive Step, Specification, Types of Patent Application, Process E-Filling, Examination of Patent, Grant of Patent, Revocation, Equitable Assignments, Licences, Licensing of Related Patents, Patent Agents, Registration of Patent Agents.							nt, Grant	[9]
							T	otal Hours	45
	Book(
1.				tual Propert					
2.	Editio	on, Tata Mc		r Pamela S ducation, 2		a JK, "Busin	ess Resear	ch Methods	", 11 th
Refe	rence(s):							
1.	Chav 2019		roduction to	Intellectual	Property R	ights", CBS	PUB & DIS	T PVT Limite	ed, INDIA,
2.	Catherine I Holland "Intellectual property: Patents Trademarks Copyrights Trade Secrets"								
3.	3. David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007								
4.	4. Arun K. Narasani, Kankanala K.C., Radhakrishnan V., "Indian Patent Law and Practice", Oxfor University Press, 2010.								
5.		ard Stim, "F O Publisher		oyright & Tra	ademark - /	An Intellectu	ual Propert	y Desk Refe	erence",
6.	The I	Institute of essional Pro	Company ogramme l	Secretaries ntellectual P	of India, S roperty Rig	tatutory boo hts, Law an	dy under ar d practice",	n Act of par September	liament, 2013.

^{*}SDG 4: Quality education.

^{**}SDG 9: Industry, Innovation, and Infrastructure.

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Research Design	
1.1	Overview of Research Process and Design	1
1.2	Use of Secondary and Exploratory Data to Answer the Research Question	2
1.3	Qualitative Research	1
1.4	Observation Studies	1
1.5	Experiments and Surveys	1
1.6	Selection of the Right Medium and Journal for publication	2
1.7	Translation of Research	1
2.0	Data Collection and Sources	
2.1	Measurements, Measurement Scales	2
2.2	Questionnaires and Instruments	2
2.3	Sampling and Methods	2
2.4	Data - Preparing, Exploring, Examining and Displaying	3
3	Data Analysis and Reporting	
3.1	Overview of Multivariate Analysis	1
3.2	Hypotheses Testing and Measures of Association	2
3.3	Presenting Insights	1
3.4	Findings using Written Reports and Oral Presentation	2
3.5	Checks for Plagiarism	1
3.6	Falsification	1
3.7	Fabrication, and Misrepresentation	1
4	Intellectual Property Rights	
4.1	Intellectual Property – The concept of IPR	1
4.2	Evolution and Development of Concept of IPR, IPR Development Process	1
4.3	Trade secrets, Utility Models, IPR & Bio Diversity	2
4.4	Role of WIPO and WTO in IPR Establishments	2
4.5	Right of Property, Common rules of IPR Practices	1
4.6	Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR Maintenance	2
5.0	Patents	
5.1	Patents – Objectives and Benefits of Patent, Concept, Features of Patent	2
5.2	Inventive step, Specification, Types of Patent Application	2
5.3	Process E-filling, Examination of Patent	1
5.4	Grant of patent, Revocation	1
5.5	Equitable Assignments, Licences, Licensing of Related Patents	2
5.6	Patent agents, Registration of Patent Agents	1

Dr.A.Murugesan – <u>murugesan@ksrct.ac.in</u>

70 PVL 102	Analog IC Design	Category	L	Т	Р	Credit
		PC	3	0	0	3

- To develop the ability to analyze, design, and implement analog building blocks using CMOS technology, considering the challenges posed by continued miniaturization and integration in VLSI systems.
- To study the most important building blocks of all CMOS analog IC.
- To provide a comprehensive understanding of the fundamental principles, circuit configurations, and design trade-offs involved in MOS transistor-level design.
- To enable students to understand and analyze the design challenges of single and multistage voltage, current, and differential amplifiers.
- To know the band gap references and temperature independent references.

Pre-requisites

Courses on Semiconductor Devices and Circuits and Linear IC Applications at UG Level

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design amplifiers to meet user specifications	Apply
CO2	Analyze the frequency and noise performance of amplifiers	Analyze
CO3	Design and analyze feedback amplifiers and one stage op amps	Apply
CO4	Design and analyze two stage op amps	Apply
CO5	Design and analyze current mirrors and current sinks with MOS devices	Apply

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	3	3	2	2	3		
CO2	3	3	3	2	2	3		
CO3	3	3	3	2	2	3		
CO4	3	3	3	2	2	3		
CO5	3	3	3	2	2	3		
3 - Strong; 2 - Medium; 1 - Some								

Assessment Pattern			
Bloom's	Continuous Assess	End Sem	
Category	1	2	Examination (Marks)
Remember	10	20	10
Understand	20	20	10
Apply	20	20	70
Analyse	10	-	10
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Syllabus								
	K.S.	Rangasam		of Technolo		omous R2	025	
				-VLSI Desi				
				2– Analog I				
Semeste	r l	lours/Wee		Total				
-	` L	T	Р	Hours	С	CA	ES	Total
l	3	0	0	45	3	40	60	100
	tage Amplifie							
	s Physics an							
	al Amplifier w							[9]
	ad, Design of							
	/, ICMR and F					Ampliner Su	uctures	
Millor Eff	quency and Nect, Association	or of Dolog	ith Nadaa	Eraguanav	Doononoo o	of CC 0	nd Course	
	Cascade and							[9]
	Single Stage /					acteristics o	i Noise,	
	k and Single				ipiiiioro.			
	s and Types				Effect of L	oading in F	eedhack	
	, Operational							[9]
	o Amps, Inpu							[~]
	, Noise in Op		······aiioiio,	Ja 2000.				
	and Frequen		sation of T	wo Stage A	Amplifier			
	of Two Stage					CMOS CS a	s Second	
Stage ar	d Using Caso	ade Secor	id Stage, M	lultiple Syst	ems, Phas	e Margin, F	requency	[9]
	sation, and C			Stage Op A	mps, Slewi	ng In Two	Stage Op	
	ther Compens	ation Techi	niques.					
	References							
	Sinks and So							
	Cascade Curre							[9]
	ndependent B			ndependen	t Reference	es, PIAI a	and CIAI	
Current	Generation, Co	onstant-Givi	Biasing				otal Hours	45
Text Boo	ls/o\.						otal Hours	45
	hzad Razavi, '	Docian of A	nalog CMO	S Intogrator	1 Circuite" 1	Cata MaGray	<u> </u> 	
	lley M.C. Sans						W ПIII, 2017.	
	•	en, Analog	Design Es	sentials, Sp	ringer, 2010	J.		
	Reference(s): 1							∩13
2. Phillip E.Allen, Douglas R. Holberg, "CMOS Analog Circuit Design", 2 nd Edition, Oxford								
University Press, 2016.								
			•					
4. Ja 20	cob Baker "CN 15.	IOS: Circui	t Design, La	ayout, and S	imulation",	3 rd Edition,	Wiley IEEE	Press,

^{*}SDG 9: Industry, Innovation, and Infrastructure **SDG 12: Responsible Consumption and Production

S. No. Topics 1 Single Stage Amplifiers 1.1 Basic MOS Physics and Equivalent Circuits and Models 1.2 CS, CG and Source Follower 1.3 Differential Amplifier with Active Load 1.4 Cascade and Folded Cascade Configurations with Active Load 1.5 Design of Differential and Cascade Amplifiers 1.6 Slew Rate, Noise, Gain, Bandwidth	No. of hours 1 1 1 1 1
 1.1 Basic MOS Physics and Equivalent Circuits and Models 1.2 CS, CG and Source Follower 1.3 Differential Amplifier with Active Load 1.4 Cascade and Folded Cascade Configurations with Active Load 1.5 Design of Differential and Cascade Amplifiers 	1 1
1.2 CS, CG and Source Follower 1.3 Differential Amplifier with Active Load 1.4 Cascade and Folded Cascade Configurations with Active Load 1.5 Design of Differential and Cascade Amplifiers	1 1
 1.3 Differential Amplifier with Active Load 1.4 Cascade and Folded Cascade Configurations with Active Load 1.5 Design of Differential and Cascade Amplifiers 	1
1.4 Cascade and Folded Cascade Configurations with Active Load 1.5 Design of Differential and Cascade Amplifiers	
1.5 Design of Differential and Cascade Amplifiers	1
1.6 Slew Rate, Noise, Gain, Bandwidth	1
	1
1.7 ICMR and Power Dissipation	1
1.8 Voltage Swing	1
1.9 High Gain Amplifier Structures	1
2 High Frequency and Noise Characteristics of Amplifiers	·
2.1 Miller effect	1
2.2 Association of Poles with Nodes	1
2.3 Frequency Response of CS, CG	1
2.4 Frequency Response of Source Follower	1
2.5 Cascade Amplifier Stages	1
2.6 Differential Amplifier Stages	1
2.7 Statistical Characteristics of Noise	1
2.8 Noise in Single Stage Amplifiers	1
2.9 Noise in Differential Amplifiers	1
3 Feedback and Single Stage Operational Amplifiers	
3.1 Properties and Types of Negative Feedback Circuits	1
3.2 Effect of loading in Feedback Networks	1
3.3 Operational Amplifier Performance Parameters	1
3.4 Single stage Op Amps	1
3.5 Two stage Op Amps	1
3.6 Input range Limitations and Gain Boosting	1
3.7 Slew Rate, Power Supply Rejection	1
3.8 Noise in Op Amps	1
4 Stability and Frequency Compensation of Two Stage Amplifier	
4.1 Analysis of Two Stage Op Amp	1
4.2 Two Stage Op Amp Single Stage CMOS CS as Second Stage and Cascade Second Stage	Using 2
4.3 Multiple Systems	1
4.4 Phase Margin	1
4.5 Frequency Compensation	1
4.6 Compensation of Two Stage Op Amps	1
4.7 Slewing in Two Stage Op Amps	1
4.8 Other Compensation Techniques	1
5 Bandgap References	I
5.1 Current sinks, Sources and Current Mirrors	1
5.2 Wilson current Source, Widlar Current Source	1
5.3 Cascade Current Source	1
5.4 Design of High Swing Cascade Sink	1
5.5 Current Amplifiers	1

5.6	Supply Independent Biasing	1
5.7	Temperature Independent References	1
5.8	PTAT and CTAT Current Generation	1
5.9	Constant-GM Biasing	1

Saravanan S - <u>saravanan.s@ksrct.ac.in</u>

082

70 PVL 103	Digital IC Design	Category	L	Т	Р	Credit
70 PVL 103	Digital IC Design	PC	3	0	0	3

- To introduce the fundamentals of MOS circuit design, covering CMOS inverters, power dissipation, and interconnect effects.
- To explore combinational and sequential CMOS logic design techniques and their influence on circuit performance.
- To develop arithmetic building blocks, including adders, multipliers, and comparators, while considering power-speed trade-offs.
- To examine timing-related challenges in VLSI circuits and study synchronizers, metastability, and self-timed design approaches.
- To provide hands-on experience in designing and optimizing data path structures for digital processor architectures

Pre-requisites

• Digital logic design, VLSI Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain MOS circuit design principles, including CMOS inverter	Apply
	characteristics, power dissipation, and interconnect effects, lithography	
CO2	Analyze different combinational and sequential CMOS logic design	Analyze
	techniques and their impact on circuit performance.	
CO3	Design arithmetic building blocks such as adders, multipliers, and	Apply
003	comparators with optimized power-speed trade-offs.	
CO4	Evaluate timing issues in VLSI circuits, including synchronizers,	Apply
004	metastability, and self-timed circuit designs.	
CO5	Demonstrate proficiency in implementing data path structures and	Apply
CO5	optimizing digital processor architectures.	

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	3	3	2	2	3		
CO2	3	3	3	2	2	3		
CO3	3	3	3	2	2	3		
CO4	3	3	3	2	2	3		
CO5	3	3	3	2	2	3		
3 - St	rong; 2	2 - Med	lium; 1	- Som	е			

Assessment Pattern

Bloom's	Continuous Assess	End Sem	
Category	1	2	Examination (Marks)
Remember	10	20	30
Understand	20	20	10
Apply	20	20	30
Analyse	10	-	30
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

C. P. L

Passed in BoS Meeting held on 13/06/2025

Approved in Academic Council Meeting held on 19/07/2025

Syllabu	Syllabus							
K.S.Rangasamy College of Technology – Autonomous R2025								
M.E-VLSI Design 70 PVL 103- Digital IC Design								
	1 .	lours/Wee				M.	veisees NA end	
Semest	ter - r	T Taurs/vvee	k P	Total Hours	Credit C		ximum Marl ES	ks Total
1	3	0	0	45	3	CA 40	60	100ai
MOS Circuit Design Process*								
Overv Physic Power techni	ew of VLSI Desc. cs- CMOS Inve Dissipation, ques for VLSI/L	esign Flow, rter Charac Photolitho JLSI;Mask (cteristics, Dography, E- generation	C Transfer	Curves and	Switching	Behavior -	[9]
Static Transr Perfor Charg	inational CMO and Compleme mission Gate mance Conside e Sharing Effec	entary CMC Implement erations - ts	S Logic De ation - D Signal Inte	ynamic CN	10S Desig	ın Technic	ques and	[9]
Desigr Amplif Seque	ential CMOS Lo n of Static and ier-Based Reg ential Circuits - N	Dynamic jister Arch Non-Bistabl	Latches an itectures -	Pipelining	Techniqu	es for Hi	gh-Speed	[9]
Classi Consti Metho	g Issues IN VL fication of Timi raints and Issu dologies for As tability and Timi	ng in Digit ies in Syn ynchronous	chronous (S Systems -	Circuit Desi	gn - Self-t	imed Circu	iit Design	[9]
Desig Datapa and S	Design of Arithmetic Building Blocks** Datapath Design in Digital Processor Architectures - Design of Binary Adders, Multipliers and Shifters — Array based subsystems based on CMOS and FinFET design:SRAM, DRAM,ROM. [9]						[9]	
						T	otal Hours	45
 Jan M Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits - A Design Perspective", 2nd Edition, Prentice Hall, 2018. John P.Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons, 								
Chris A. Mack," Fundamental Principles of Optical Lithography: The Science of								
Microfabrication", 2nd Edition, John Wiley & Sons Ltd, 2017								
Reference(s):								
 Neil H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design - A Systems Perspective", 2nd Edition, Pearson Education, 2010. Kamran Eshraghian, Douglas A. Pucknell, "Essentials of VLSI Circuits and Systems", Prentice 								
^{∠.} ⊢	lall, 2011							Prentice
3. C	.Mead and L.C					on Wesley,	1999	
4. K	ang, "CMOS D	gital Integra	ated Circuits	s", McGraw	Hill, 2012.			

^{*} SDG 7: Affordable and Clean Energy
** SDG 9: Industry, Innovation, and Infrastructure

Course	Course Contents and Lecture Schedule						
S. No.	Topics	No. of hours					
1	MOS circuit design process						
1.1	Overview of VLSI Design Flow	1					
1.2	MOSFET Enhancement Transistors	1					
1.3	MOS Device Physics	1					
1.4	CMOS Inverter Characteristics	1					
1.5	DC Transfer Curves and Switching Behavior	1					
1.6	Power Dissipation	1					
1.7	Photolithography	1					
1.8	E-beam lithography and newer lithography techniques for VLSI/ULSI	1					
1.9	Mask generation	1					
2	Combinational CMOS Logic Design	1					
2.1	Static CMOS Logic Design Principles	1					
2.2	Complementary CMOS Logic Design	1					
2.3	Pass Transistor Logic	1					
2.4	Transmission Gate Implementation	1					
2.5	Dynamic CMOS Design Techniques and Performance Considerations	1					
2.6	Signal Integrity Issues	1					
2.7	Noise	1					
2.8	Glitches	1					
2.9	Charge Sharing Effects	1					
3	Sequential CMOS Logic Design	1					
3.1	Design of Static and Dynamic Latches and Registers	2					
3.2	Pulse-Triggered Architectures	1					
3.3	Sense Amplifier Based Register Architectures	2					
3.4	Pipelining Techniques for High-Speed Sequential Circuits	2					
3.5	Non-Bistable Sequential Circuit Concepts and Applications	2					
4	Timing Issues In VLSI Circuits	1					
4.1	Classification of Timing in Digital Systems	1					
4.2	Synchronization Challenges	2					
4.3	Timing Constraints and Issues in Synchronous Circuit Design	2					
4.4	Self-timed Circuit Design Methodologies for Asynchronous Systems	2					
4.5	Synchronizers and Arbiters for Resolving Metastability and Timing Conflicts	2					
5	Design of Arithmetic Building Blocks	I					
5.1	Datapath Design in Digital Processor Architectures	1					
5.2	Design of Binary Adders	2					
5.3	Design of Multipliers	1					
5.4	Design of Shifters	1					
5.5	Array based subsystems based on CMOS and FinFET design	1					
5.6	SRAM,	1					
5.7	DRAM, ROM.	2					
	L	<u>i </u>					

Dr. D. Mugilan - mugilan@ksrct.ac.in

70 PVL 104	Advanced Digital	Category	L	Т	Р	Credit
	System Design	PC	3	1	0	4

- To design asynchronous sequential circuits
- To identify hazards in asynchronous sequential circuits
- To study the fault testing procedure for digital circuits.
- To learn about the architecture of programmable devices.
- To design and implement digital circuits using programming tools.

Pre-requisites

Digital Logic Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe synchronous sequential circuits.	Understand
CO2	Analyze hazards in asynchronous sequential circuits.	Apply
CO3	Discuss the testing procedure for combinational circuit and PLA.	Analyse
CO4	Design PLD and ROM.	Analyse
CO5	Design and use programming tools for implementing digital circuits	Analyse

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	3	3	3	3			
CO2	3	3	3	3	3	3			
CO3	3	3	3	3	3	3			
CO4	3	3	3	3	3	3			
CO5	3	3	3	3	3	3			
3 - St	3 - Strong; 2 - Medium; 1 - Some								

Assessment Pattern

Bloom's	Continuous Assess	End Sem	
Category	1	2	Examination (Marks)
Remember	20	10	30
Understand	20	20	30
Apply	20	20	30
Analyse	-	10	10
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

C.P.C.

Syllabus								
	K.S.	Rangasam			gy – Auton	omous R2	025	
				-VLSI Desi				
					al System D			
Semester		lours/Wee		Total	Credit		ximum Mar	
	L	Ţ	Р	Hours	С	CA	ES	Total
ı	3	1	0	60	4	40	60	100
	al Circuit Des		_					
	f Clocked Sy							[9]
	Table, State Table Assignment and Reduction-Design of Synchronous Sequential Circuits Design of Iterative Circuits-ASM Chart.				r-1			
	nous Seque				. T-1-1- D-	de de la composición		
	of Asynchro							[0]
Asynchror	ignment- Tra	nsition rabi	e and Prob	iems in Trai	isition rabie	e- Design of		[9]
	ious I Circuit - S	tatic Dyna	mic and Ed	scontial has	varde Miv	od Oporati	na Modo	
	nous Circuits					eu Operau	ing Mode	
	nosis and T				nu onor.			
	le Method-P				lean Differe	nce Metho	d - Kohavi	
	D Algorithm							[9]
	eration - DFT							
Synchron	ous Design	Using Pro	grammable	Devices a	nd System	Design Us	ing VHDL	
Programn	nable Logic [Devices — I	Designing a	Synchrone	ous Sequer	tial Circuit	using PLA/	
PAL Com	puter Aided	Design —	Realization	of Finite S	tate Machir	ne using Pl	_D.FPGA	
	PGA - Xilinx							[9]
	ional Circuits				erators — (Compilatior	n and	
	n of VHDL C	ode — Mod	deling using	y VHDL.				
Timing A	•							
	ngs - Static R							[9]
	mplex Progra						e - Internal	[0]
structure -	Data display	/ - Setup an	d Control -	Clocking an			-	
					Total Hou	ırs: 45 + 15	(Tutorial)	60
Text Bool	<u> </u>	. "D'.'(-!		1 D' " T	-1- M-O	1111 0040		
 Donald G. Givone, "Digital principles and Design", Tata McGraw Hill, 2016. John M Yarbrough, 'Digital Logic applications and Design', Thomson Learning, 2017. 								
l l		gh, 'Digital L	ogic applica	tions and D	esign', Thon	nson Learni	ng, 2017.	
Reference(s):								
1. Nripendra N Biswas, "Logic Design Theory", Prentice Hall of India Private Ltd., 2016.								
 Charles H. Roth Jr., 'Digital System Design using VHDL', Thomson Learning, 2016. Wakerly J.F, 'Digital Design Principles and Practices', 4 Edition, Pearson Education, 2017. 								
	, ,		•		·	,	•	
4. Wal	kerly J.F, 'Dig	jital Design:	Principles a	and Practice	s', 3 Editio	n, Pearson	Education, 20	016.

^{*} SDG 4: Quality Education
** SDG 17: Partnerships for the Goals

Course Contents and Lecture Schedule				
S. No.	Topics	No. of hours		
1	Sequential Circuit Design			
1.1	Analysis of Clocked Synchronous Sequential Circuits and Modelling	2		
1.2	State Diagram	1		
1.3	State Table, State Table Assignment and Reduction	1		
1.4	Design of Synchronous Sequential Circuits	1		
1.5	Design of Iterative Circuits	1		
1.6	ASM Chart	2		
2	Asynchronous Sequential Circuit Design	•		
2.1	Analysis of Asynchronous Sequential Circuit	1		
2.2	Flow Table Reduction	1		
2.3	Races-State Assignment	1		
2.4	Transition Table and Problems in Transition Table.	1		
2.5	Design of Asynchronous Sequential	1		
2.6	Circuit - Static, Dynamic and Essential	1		
2.7	Hazards	1		
2.8	Mixed Operating Mode Asynchronous Circuits	1		
2.9	Designing Vending Machine Controller	1		
3	Fault Diagnosis and Testability Algorithms	L		
3.1	Fault Table Method	1		
3.2	Path Sensitization Method	1		
3.3	Boolean Difference Method	1		
3.4	Kohavi Algorithm D Algorithm	1		
3.5	Tolerance Techniques	1		
3.6	The Compact Algorithm	1		
3.7	Fault in PLA	1		
3.8	Test Generation	1		
3.9	DFT Schemes – Built in Self Test	1		
4	Synchronous Design Using Programmable Devices and System Design UVHDL	Jsing		
4.1	Programmable Logic Devices	1		
4.2	Designing a Synchronous Sequential Circuit using PLA/ PAL Computer Aided Design	2		
4.3	Realization of Finite State Machine using PLD.FPGA	1		
4.4	Xilinx FPGA	1		
4.5	Xilinx 2000 - Xilinx 3000 - Xilinx 4000.	1		
4.6	VHDL Description of Combinational Circuits and Sequential Circuit.	1		
4.7	VHDL Operators	1		
4.8	Compilation and Simulation of VHDL Code – Modeling using VHDL	1		
5	Timing Analysis	•		
5.1	ROM timings	1		
5.2	Static RAM timing	1		
5.3	Synchronous Static RAM and it's timing	1		
5.4	Dynamic RAM timing	1		
5.5	Complex Programmable Logic Devices	1		
5.6	Logic Analyzer Basic Architecture	1		
5.7	Internal Structure	1		
		1		

Passed in BoS Meeting held on 13/06/2025

Approved in Academic Council Meeting held on 19/07/2025

5.8	Data Display	1
5.9	Setup and Control - Clocking and Sampling	1

 $Dr.S. Malarkhodi-\underline{malarkhodi@ksrct.ac.in}$

70 PVL E11	System Design with	Category	L	Т	Р	Credit
	FPGA	PE	3	0	0	3

- To identify the different types of programming elements, programmable logic blocks, programmable input-output blocks and programmable interconnects of various types of FPGAs
- To understand the steps involved in synthesis, simulation, and testing of systems
- To design and implement circuits, subsystem and system using FPGA and I/O boards

Pre-requisites

Digital System Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire the knowledge on basic concepts of FPGA and its structures	Understand
CO2	Describe the steps involved in synthesis, simulation, and testing of systems	Understand
CO3	Design combinational and arithmetic circuits using FPGA board	Create
CO4	Design memories and DCTQ processor	Create
CO5	Design real time applications using FPGA board	Create

Mapping with Programme Outcomes

COs	POs						
COS	1	2	3	4	5	6	
CO1	2	1	1	-	2	3	
CO2	2	1	1	1	2	3	
CO3	3	2	2	2	2	3	
CO4	3	2	2	2	2	3	
CO5	3	2	2	2	2	3	
3 - St	3 - Strong; 2 - Medium; 1 - Some						

Assessment Pattern

Bloom's	Continuous Assess	End Sem		
Category	1	2	Examination (Marks)	
Remember	20	10	10	
Understand	40	10	10	
Apply	-	20	20	
Analyse	-	-	30	
Evaluate	-	-	-	
Create	-	20	30	
Total	60	60	100	

Cla

Syllabus								
	K.S.	Rangasam		f Technolo		omous R2	025	
				-VLSI Desi				
				ystem Desi	•			•
Semester		lours/Weel		Total	Credit		ximum Mar	
	L	T	Р	Hours	C	CA	ES	Total
<u> </u>	3	0	0	45	3	40	60	100
FPGA Architectures* Basic Concepts - Digital Design and FPGAs - The Role of FPGAs - FPGA Types - FPGAs vs Custom VLSI - FPGA-Based System Design - Goals and Techniques - Hierarchical Design - Design Abstraction- Methodologies. FPGA Basics: Components of an FPGA - Programming Technology - Antifuse Technology - Logic Circuit Representation of FPGA. FPGA Structure: Logic Block - Logic Cluster — Adaptive LUT - Routing Part - Switch Block - Connection Block - I/O Block - DSP Block - Hard Macros - Embedded Memory - Configuration Chain - PLL and DLL						[9]		
PFGA Desi Design Flow Based Des Technology and Synthe	w and Desiging - Desiging - Output - Ou	gn with Pro Clustering - s - Place a	ocessor. Do Place and F nd Route –	esign Meth Route - Low	odology: F Power Desi	PGA Desig	gn Flow -	[9]
FPGA Based Subsystem Design Combinational Circuits: Basic Gates - Majority Logic and Concatenation - Shift Operations - Multiplexers - Demultiplexer - Full Adder - Magnitude Comparator. Sequential Circuits: D Flip-flop - Registers - Shift Registers - Counters - Finite State Machines - Pattern Sequence Detector. Arithmetic Circuit Designs: Digital Pipelining - Partitioning of a Design - Signed Adder Design - Multiplier Design.					[9]			
Design of M On Chip D Discrete Co Processor -	FPGA Based System Design** Design of Memories: On-chip Dual Address ROM Design - Single Address ROM Design - On Chip Dual RAM Design - External Memory Controller Design. System Designs: Discrete Cosine Transform and Quantization Processor - FOSS Motion Estimation Processor - DCTQ Processor				[9]			
FPGA Based Project Design Project Designs: Traffic Light Controller - Real Time Clock - Digital Signal Processor - PCI					[9]			
						T	otal Hours	45
Text Book(
	ne Wolf, "FP							
2. Hideharu Amano, "Principles and Structures of FPGAs", Springer, 2018								
	Reference(s): 1. Ramachandran S, "Digital VLSI Systems Design: A Design Manual for Implementation of							
Proje	cts on FPG	As and ASI	Cs Using V	erilog", Spri	nger, 2007	anual for Im	plementatior	n of
	R. Wilson,							
3. Sanja	ay Churiwala	a, "Designir	ng with Xilin	x FPGAs Us	sing Vivado	", Springer,	2017	

C.P.L

^{*} SDG 9 - Industry, Innovation, and Infrastructure ** SDG 12 - Responsible Consumption and Production

Course (Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1	FPGA Architectures	
1.1	Basic Concepts - Digital Design and FPGAs	1
1.2	The Role of FPGAs - FPGA Types - FPGAs vs. Custom VLSI	1
1.3	FPGA-Based System Design - Goals and Techniques - Hierarchical Design - Design Abstraction- Methodologies	1
1.4	Components of an FPGA - Programming Technology - Antifuse Technology	1
1.5	Logic Circuit Representation of FPGA, Logic Block - Logic Cluster	1
1.6	Adaptive LUT - Routing Part - Switch Block - Connection Block	1
1.7	I/O Block - DSP Block - Hard Macros	1
1.8	Embedded Memory	1
1.9	Configuration Chain - PLL and DLL	1
2	FPGA Design Flow	
2.1	Design Flow - Design Flow by HDL	1
2.2	HLS Design - IP-Based Design	1
2.3	Design with Processor. Design Methodology	1
2.4	Technology Mapping – Clustering	1
2.5	Place and Route - Low Power Design Tools	2
2.6	Simulation and Synthesis Concepts	2
2.7	Place and Route – Technology Mapping	1
3	FPGA Based Subsystem Design	1
3.1	Basic Gates - Majority Logic and Concatenation	1
3.2	Shift Operations - Multiplexers - Demultiplexer - Full Adder	1
3.3	Magnitude Comparator, D Flip-flop	2
3.4	Registers - Shift Registers	1
3.5	Counters - Finite State Machines	1
3.6	Pattern Sequence Detector	1
3.7	Digital Pipelining - Partitioning of a Design	1
3.8	Signed Adder Design - Multiplier Design	
4	FPGA Based System Design	
4.1	On-chip Dual Address ROM Design	1
4.2	Single Address ROM Design	2
4.3	On Chip Dual RAM Design	1
4.4	External Memory Controller Design	1
4.5	Discrete Cosine Transform and Quantization Processor	2
4.6	FOSS Motion Estimation Processor	1
4.7	DCTQ Processor	1
5	FPGA Based Project Design	
5.1	Project Designs: Traffic Light Controller	1
5.2	Real Time Clock	1
5.3	Digital Signal Processor	1
5.4	PCI Bus Arbiter	1
5.5	DCTQ Processor	1
5.6	Electrostatic Precipitator Controller	1
5.7	JPEG	1

5.8	H.263	1
5.9	MPEG 1/ MPEG 2 Codec	1

 $Mr.A. Balachandran \\ - \underline{abalachandran@ksrct.ac.in}$

70 PVL E12	Advanced Computer Architecture	Category	L	Т	Р	Credit
IVI VL LIZ	Advanced Computer Architecture	PE	3	0	0	3

- To impart basic concepts of computer architecture and theory of parallelism
- To explain key skills of constructing cost-effective computer systems.
- To familiarize program and network properties
- To help students in understanding various architectures and hardware technologies
- To facilitate students in analyzing scalability and performance issues in various architectures.

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe the principles of computer design.	Understand
CO2	Compare the performance of different architectures	Understand
CO3	Improve application performance for different CPU architectures.	Understand
CO4	Develop applications for high performance computing systems	Apply
CO5	Describe the scalable and architecture data flow	Understand

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	3	-	-	-	3		
CO2	3	2	-	2	-	3		
CO3	3	3	-	-	-	3		
CO4	3	2	-	-	-	3		
CO5	3	3	-	3	-	3		
3 - St	3 - Strong; 2 - Medium; 1 - Some							

	Continuous Assessme	End Sem	
Bloom's Category	1	2	Examination (Marks)
Remember	30	15	30
Understand	30	35	40
Apply	-	10	30
Analyse	-	-	-
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Clah

Sylla	bus								
	K.S.Rangasamy College of Technology – Autonomous R2025								
	M.E-VLSI Design								
70 PVL E12- Advanced Computer Architecture						1			
Sem	ester	<u> </u>	Hours/Weel		Total	Credit		ximum Mar ES	
	1	3	0	P 0	Hours 45	C 3	CA 40	60	Total 100
Theory of Parallelism							100		
	-			sors and	Multi comp	outers. Mul	ti vector a	and SIMD	
					tectural De				[9]
		perties.				•			
Princ	ciples	of Perform	ance and F	lardware T	echnology				
					rallel Prod				
					and Appr				[9]
			iar and vec	tor Proces	sors, Memo	ry Hierarch	y i ecnnoio	gy, Virtuai	
		chnology.	ed Memory	<u> </u>					
					Shared Mer	nory Organi	zations		
			scalar Tech		Orial ca Wici	nory Organi	20110113.		[9]
					ne Process	ors, Instruc	tion Pipelin	e Design,	[-]
Linear Pipeline Processors, Nonlinear Pipeline Processors, Instruction Pipeline Design, Arithmetic Pipeline Design.									
Parallel and Scalable Architectures									
					Cache Col		,	ronization	[9]
					s, Vector P	rocessing I	Principles,	Multifactor	[~]
Multiprocessors, implementation Models									
Scalable, Multithreaded, and Dataflow Architectures Inter processor Communications, Latency hiding technique Case study: CM 5						[9]			
Total Hours						45			
Text	Text Book(s):								
	Kai Hwang Naroch Intwoni "Advanced Computer Architecture Parallelism Scalability							ty,	
1. Programmability", 2 nd Edition, Tata McGraw Hill.									
2.	C Hamacher 7 Vranesic and S Zaky Computer Organization, McGraw-Hill, 5th Edition 2002								
ISBN: 0072320869									
Refe	Reference(s):								
1.	William Stallings, "Computer Organization and Architecture - Designing for performance",					mance",			
Pearson, 2017									
۷.	2. Richard Y Kain, "Advanced Computer Architecture: A Systems Design Approach", PHI.								
3.	3. Andrew S. Tanenbaum, "Structured Computer Organization", Prentice Hall, 6 th Edition, 2012, ISBN: 978-0132916523					1, 2012,			
	IODIA	. 9/0-0132	910023						

^{*} SDG 9- Industry, Innovation, and Infrastructure

Clah

Course Contents and Lecture Schedule				
S. No.	Topics	No. of hours		
1	Theory of Parallelism			
1.1	State of computing, Multiprocessors and Multi computers	2		
1.2	Multi vector and SIMD computers	2		
1.3	PRAM and VLSI models	1		
1.4	Architectural Development tracks	2		
1.5	Program and Network properties	2		
2	Principles of Performance and Hardware Technology			
2.1	Performance Metrics and Measures	1		
2.2	Parallel Processing Applications	1		
2.3	Speedup Performance Laws	1		
2.4	Scalability Analysis and Approaches	2		
2.5	Advanced Processor Technology	1		
2.6	Superscalar and Vector Processors	1		
2.7	Memory Hierarchy Technology	1		
2.8	Virtual Memory Technology	1		
3	Bus Cache and Shared Memory			
3.1	Bus Systems	1		
3.2	Cache Memory Organizations	1		
3.3	Shared Memory Organizations	1		
3.4	Linear Pipeline Processors	1		
3.5	Nonlinear Pipeline Processors	1		
3.6	Instruction Pipeline Design	2		
3.7	Arithmetic Pipeline Design	1		
4	Parallel and Scalable Architectures			
4.1	Multiprocessor System Interconnects	1		
4.2	Cache Coherence and Synchronization Mechanisms	1		
4.3	Message-Passing Mechanisms	2		
4.5	Vector Processing Principles	2		
4.6	Multifactor Multiprocessors	1		
4.7	implementation Models	2		
5	Scalable, Multithreaded and Dataflow Architectures			
5.1	Interprocessor Communications	3		
5.2	Latency hiding technique	3		
5.3	Case study: CM 5	3		

Mr.S.Jayamani-jayamani@ksrct.ac.in

C.P.L

70 PVL E13	VLSI Digital Signal	Category	L	T	Р	Credit
	Processing	PE	3	0	0	3

- To learn the different types of Digital filters.
- To know the concepts of iteration bound.
- To learn the various transformations include retiming folding and unfolding.
- To acquire knowledge in pipelining and parallel processing.
- To learn the concepts of fast convolution and algorithmic strength reduction.

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design FIR and IIR digital filters	Apply
CO2	Apply various algorithms to compute iteration bound of DSP system	Apply
CO3	Describe the concepts of pipelining and parallel processing of FIR digital filters.	Apply
CO4	Design a high-level architectural transformation which includes retiming folding and unfolding	Analyse
CO5	Describe the techniques of fast convolution algorithm and architecture strength reduction in filters.	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	2	2	3
CO3	3	3	3	3	3	3
CO4	3	3	3	2	2	3
CO5	3	3	3	2	3	3
3 – Strong; 2 – Medium; 1 - Some						

Assessment Pattern

Bloom's Category	Continuous A	End Sem Examination	
Dioom o oatogory	1	2	(Marks)
Remember	20	15	30
Understand	20	15	30
Apply	20	10	20
Analyse	-	20	20
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Clah

Syllabus

K.S. Rangasamy College of Technology – Autonomous R 2025														
					VLSI Design									
					Digital Sign									
Seme	ester		Hours / Weel	С Р	Total	Credit		Maximum Marks						
		L 3	0	<u>Р</u>	Hours 45	C 3	CA 40	ES 60	Total 100					
Poaliz	ation of	Digital Filt	, and the second	0	40	<u> </u>	40	00	100					
		_	design - Dire	ct form I II	Cascade Pa	rallel Ladde	ar - Lattice fil	tors	[9]					
	on Bour		design blie	00 1011111, 11,	<u> </u>	Talloi, Ladde	Lattice III	1010.						
			Graph Repres	entations I	loop Bound	and Iteratio	n Bound A	laorithms for	[9]					
			d, Iteration Bo		•			igorianio ioi	[9]					
		d Parallel P												
•	•		FIR Digital Fi	Iters - Parall	lel Processin	a - Pipelinina	and Paralle	el Processina	[9]					
	v Power		v Digital i i	noro raran		9	, arrair araire	g	[0]					
Transf	formatic	ns												
			- Definitions	and Proper	ties - Solvin	a System o	f Inequalitie	s - Retiming						
						•	•	ding - Critical	[9]					
	•		etiming - Ap	•		•		•	[5]					
		•	Minimization	•	•			•						
	onvolut				· regions is									
			Modified Coc	nk - Toom A	Jaorithm Wir	nograd Algor	ithm- Modifi	ed Winograd						
		•			•	•		ters, Parallel	[9]					
•		or Rank-Or	•		oro aria rra	noronno i an	unor 1 11 t 1 11	toro, raranor						
								Total H	 ours: 45					
Text b	ook(s):													
	Keshabl science,		SI Digital Sigr	nal Processi	ng Systems	Design and I	mplementat	ion", Wiley - I	nter					
			l Dimitris G M	anolakis "D)igital signal	nrocessina –	Principles	Algorithms an	d					
2 1	John G Proakis and Dimitris G Manolakis, "Digital signal processing – Principles, Algorithms and Applications", Pearson, 2015.													
	nce(s):				-	-								
		5 Y, White h ₋td., 2013	ouse H.J, T. I	Kailath, "VLS	SI and Mode	rn Signal Pro	ocessing", P	rentice Hall of	India					
2	Uwe Me	yer Baese,							2014.					
3	Lonnie C	CLudeman.	"Fundamenta	als of Digital	Signal Drog	oooina" \A/ilo	v India (D) I							
4 1			ectures for Di				, , , ,							

Course Contents and Lecture Schedule

S.No	Торіс	No. of Hours
1	Realization of Digital Filters	•
1.1	FIR Filter Design	1
1.2	IIR Filter Design	1
1.3	Direct form I Realization	1
1.4	Direct form II Realization	1
1.5	Cascade Realization	1
1.6	Parallel Realization	1
1.7	Ladder form Realization	1
1.8	Lattice Filters	2
2	Iteration Bound	
2.1	Introduction	1
2.2	Data flow Graph Representations	2
2.3	Loop Bound and Iteration Bound	2
2.4	Algorithms for Computing iteration Bound	2
2.5	Iteration Bound of Multirate Data - Flow Graphs	2
3	Pipelining and Parallel Processing	
3.1	Introduction	1
3.2	Pipelining of FIR Digital filters	2
3.3	Parallel Processing	2
3.4	Pipelining for Low power	2
3.5	Parallel Processing for Low Power	2
4	Transformations	,
4.1	RETIMING- Introduction - Definitions and Properties	1
4.2	Solving System of Inequalities, Retiming Techniques	1
4.3	UNFOLDING: Introduction, An Algorithm for Unfolding	1
4.4	Properties of unfolding, Critical path, Unfolding and Retiming	1

4.5	Application of Unfolding	1
4.6	Folding: Introduction	1
4.7	Folding Transformation	1
4.8	Register Minimization Techniques	1
4.9	Register Minimization in Folded Architectures	1
5	Fast Convolution	
5.1	Introduction	1
5.2	Cook - Toom Algorithm	1
5.3	Modified Cook - Toom Algorithm	1
5.4	Winograd Algorithm	1
5.5	Modified Winograd Algorithm	1
5.6	Algorithmic Strength Reduction in Filters and Transforms	2
5.7	Parallel FIR Filters	1
5.8	Parallel Architectures for Rank-order Filter.	1

Mr.S.Saravanan - saravanan.s@ksrct.ac.in

C. C.L

70 PVL E14	Machine Learning in	Category	L	T	Ρ	Credit
70742214	VLSI Design	PE	3	0	0	3

- To study the concept of machine learning, and performance improvement through data preprocessing.
- To explain the various supervised learning algorithms.
- To learn the different techniques of Unsupervised Learning and Ensemble Methods.
- To learn the VLSI testing process including off-chip and on-chip testing techniques.
- To explore the machine learning techniques in various stages of VLSI design and manufacturing.

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe the concept of machine learning, data preprocess, train and evaluate machine learning models.	Apply
CO2	Apply the linear and nonlinear machine learning models.	Apply
CO3	Apply the different techniques of Unsupervised Learning and Ensemble Methods.	Apply
CO4	Apply VLSI testing methods and leverage ML techniques to optimize verification for power, performance.	Apply
CO5	Apply machine learning techniques in various stages of VLSI design and manufacturing to enhance performance.	Apply

Mapping with Programme Outcomes

COs POs							
COS	1	2	3	4	5	6	
CO1	3	3	2	3	-	3	
CO2	3	3	3	3	-	3	
CO3	3	3	3	3	3	3	
CO4	3	-	2	3	2	3	
CO5	3	3	3	3	3	3	
	3 - Strong: 2 - Medium: 1 - Some						

Assessment Pattern

Bloom's Category	Continuous Assessr	End Sem Examination (Marks)		
	1	2		
Remember	12	10	20	
Understand	28	30	50	
Apply	20	20	20	
Analyse	-	-	10	
Evaluate	-	-	-	
Create	-	-	-	
Total	60	60	100	

086

Syllabu	IS								
		K.S.Rar	ngasamy			gy – Auton	omous R	2025	
			70 D\/L E4		VLSI Desig		.		
			ours / We			g in VLSI [Credit		lavimum Mark	<u> </u>
Sem	ester		T T	P	Total Hours	Credit	CA	laximum Marl ES	Total
	i	3	0	0	45	3	40	60	100
					10		70		100
Machin	e Learnir	ng –Pre-p	rocessing	to Perfor	mance				
Machine	e Learnin	g - Types	- Pre-proc	essing - Fe	eature Engi	neering - F	eature trai	nsformation -	ſΩΊ
1				_	_			Model - Data,	[9]
Modelling and Evaluation - Evaluating Performance of a Model - Improving Performance.									
Superv	ised Lea	rning							
1 -		_	c Regress	ion - Decis	ion Tree - F	Rule-Based	Classificat	tion, Support	
1	_	_	_					otron - Multi-	[9]
				Bayes Cla					
				nble Metho					
K-mean	ıs Clustei	ring - Hie	rarchical	Methods -	– Fuzzy C	Clustering -	Principal	Component	
1		-			-	_	•	ensity Based	503
Method	s DBSCA	AN - Find	ing Patter	ns using A	Association	Rules - F	Finding Pa	atterns using	[9]
Associa	ition rules	- Markov (Chain Mor	ite Carlo M	lethods - Hi	dden Mark	ov Model-	Bagging and	
Boosting	g								
Machine Learning - VLSI Test and Verification									
VLSI Te	esting Pro	ocess - O	ff-Chip Te	esting-On-C	Chip Testin	g, Combina	ational Cir	cuit Testing,	[0]
Sequen	tial Circui	it Testing -	ML Advar	ntages-Ver	ification Pro	ocess - Tim	e-Saving -	3Ps (Power,	[9]
Perform	nance, Pri	ice), Electi	ronic Desig	gn Automa	tion (EDA)				
Applica	ations of	ML							
MI in	Manufact	urina Pro	cess Rec	ducing Ma	intenance	Costs and	Improvin	g Reliability,	
								IL in Physical	[9]
Design	- Floor Pla	anning and	d Placeme	nt Optimiz				se Studies -	
Power E	Estimation	n using Ra	ndom For	est.					
Text Bo	ok(s):							otal Hours :	45
		Alpaydm '	'Introduction	on to Mach	nine I earnir	na" 4 th Fdit	ion The M	IIT Press, Can	nbridge
1.	2020.								
2.								dition, Wiley, 2	
3.						, Ying Yi, '	'FPGA Ba	sed Implemer	ntation of
	Signal Processing Systems", John Wile, 2017. Reference(s):								
1.									
	Tom M Mitchell, "Machine Learning", 1st Edition, McGraw Hill Education, 2017.								
3.								Learning	
	Technic	ques for V	LSI Chip I	Design Ha	rdcover —	Import, 16	July 2023	<u>.</u>	
4.				•				Learning for V	•
	Design"	•	publishe					1119910398	Online
	19BN:97	01119970	וטטן זפּ4:	10.1002/9	701119910	491, 2023	ochvener	Publishing LL	C

C.P.L

Course	Course Contents and Lecture Schedule					
S. No.	Topics	No. of hours				
1.0	Machine Learning –Pre-processing to Performance					
1.1	Machine Learning - Types - Pre-processing	1				
1.2	Feature engineering	1				
1.3	Feature transformation	1				
1.4	Feature Subset Selection	1				
1.5	Feature embedding - Training a mode	1				
1.6	Preparing to model - Data	1				
1.7	Modelling and evaluation	1				
1.8	Evaluating performance of a model	1				
1.9	Improving performance.	1				
2.0	Supervised Learning					
2.1	Linear regression	1				
2.2	Logistic regression	1				
2.3	Decision Tree	1				
2.4	Rule-based classification	1				
2.5	Support vector machines	1				
2.6	Radial basis functions	1				
2.7	Neural and belief networks	1				
2.8	Perceptron - Multi-layer feed forward network	1				
2.9	Naïve Bayes classifier	1				
3.0	Unsupervised Learning and Ensemble Methods					
3.1	K-means clustering	1				
3.2	Hierarchical methods – Fuzzy clustering	1				
3.3	Principal component analysis (PCA) - Linear Discriminant Analysis (LDA),	1				
3.4	Partitioning methods	1				
3.5	Density based methods DBSCAN - Finding patterns using association rules	1				
3.6	Finding patterns using association rules	1				
3.7	Markov Chain Monte Carlo Methods	1				
3.8	Hidden Markov Model	1				
3.9	Bagging and Boosting	1				
4.0	Machine Learning - VLSI Test and Verification	1				
4.1	VLSI Testing Process	1				
4.2	Off-Chip Testing	1				

4.3	On-Chip Testing	1
4.4	Combinational Circuit Testing	1
4.5	Sequential Circuit Testing	1
4.6	ML Advantages-Verification Process	1
4.7	Time-Saving	1
4.8	3Ps (Power, Performance, Price)	1
4.9	Electronic Design Automation (EDA)	1
5.0	Applications of ML	
5.1	ML in manufacturing process	1
5.2	Reducing maintenance costs and improving reliability	1
5.3	Enhancing new design	1
5.4	Mask synthesis	1
5.5	ML in VLSI functional Verification	1
5.6	ML in Physical Design	1
5.7	Floor planning and Placement Optimization	1
5.8	Routing Optimization	1
5.9	Case studies - Power estimation using random forest.	1

Ms.R.Ramya – rramya@ksrct.ac.in

C.P.L

70 PVL E15	VLSI Technology	Category	L	Т	Р	Credit
70 PVL E13		PE	3	0	0	3

- Understanding Semiconductor Fabrication Techniques
- Application of Lithography and Mask Generation Methods
- Comparison of NMOS and CMOS Fabrication Technologies
- Analysis of Advanced Processing Techniques in ULSI Circuits
- Utilization of Process Simulation Tools for VLSI Fabrication

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understanding of semiconductor fabrication techniques	Understand
CO2	Apply lithography and mask generation techniques	Understand
CO3	Compare NMOS and CMOS fabrication technologies	Analyse
CO4	Analyze advanced processing techniques in ULSI circuits	Apply
CO5	Utilize process simulation tools for VLSI fabrication	Apply

Mapping with Programme Outcomes

COs	POs					
COs	1	2	3	4	5	6
CO1	3	3	-	-	-	-
CO2	3	3	-	2	-	-
CO3	3	3	3	-	-	-
CO4	-	3	3	3	-	-
CO5	-	3	3	3	3	-
3 - Stro	ng; 2 -	Mediu	m; 1 -	Some		

Bloom's	Continuous Ass (Ma	End Sem Examination	
Category	1	2	(Marks)
Remember	30	15	30
Understand	30	10	20
Apply	-	20	30
Analyse	-	15	20
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Clah

Syllabu	IS								
	K.S.Rangasamy College of Technology – Autonomous R2025								
	M.E-VLSI Design								
					- VLSI Tec				
Semes	stor	ŀ	lours/Wee		Total	Credit		ximum Mar	
Seme	stei -	L	Т	Р	Hours	С	CA	ES	Total
		3	0	0	45	3	40	60	100
Proces	ses in	Fabricatio	n						
Oxidation		Diffusion,		antation,	Etching	and Depo	osition, te	chniques,	[9]
		on of Proce							
Lithogi	aphy a	and Mask (generation	technique	s				
						Use of RT	,		[9]
		on in the fa	abrication of	circuits., B	Basic Bipola	r process T	echnologie	es., NMOS	[0]
Techno									
						Transistors			[9]
			ate Lechno	ologies. Lim	nitations of	NMOS Tecl	nnology.		[~]
CMOS Technology Process Sequence for CMOS Technology, Advanced CMOS Processes, Design Rule for									
				• • • • • • • • • • • • • • • • • • • •			ses, Desigr	n Rule for	[9]
			nologies as	Constrain	t" for Layou	its			
Proces			CTED Cim.	latara far n		ian Cam	. Evenneles	of cotuci	[0]
		zivi-iv and	STEP SITTLE	liators for p	rocess Des	sign, - Some	e Examples	s or actual	[9]
technol	ogies.						T	tal Hours	45
Text Bo	ok(e)	i					10	tai riours	40
1.			Anantha C	handrakası	on and Bor	ivojo Nikoli	c "Digital li	ntegrated Ci	reuite: A
'.		•	tive", Pears		an, and boi	ivoje ivikoli	c, Digital ii	niegraieu Ci	rcuits. A
2.					26 M 81 D	ocian: A Cir	cuite and Sv	etome Porci	octivo"
۷.	2. Neil H.E. Weste and David Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson, 2010.								Jecuve ,
Refere									
1.			OS: Circuit	Design La	vout and S	Simulation"	Wiley-IFFF	Press 201	9
2.	R.J. Baker, "CMOS: Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2019. Wayne Wolf, "Modern VLSI Design: System-on-Chip Design", Pearson, 2008.								
3.						uctor Device			
4.					I Circuits a				

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Processes in Fabrication	·
1.1	Oxidation	2
1.2	Diffusion	2
1.3	Ion Implantation	2
1.4	Etching and Deposition techniques	2
1.5	Characterization of Processes	1
2.0	Lithography and Mask generation techniques	1
2.1	Advanced Unit-Processors for ULSI Circuit Technologies	2
2.2	Use of RTP	2
2.3	Plasma processes in the fabrication in the fabrication of circuits	2
2.4	Basic Bipolar process Technologies	1
2.5	NMOS Technology	2
3.0	Mask Sequence Based Fabrication Process for NMOS Transistors	1
3.1	Silicon Gate and Metal Gate Technologies	4
3.2	Limitations of NMOS Technology	5
4.0	CMOS Technology	1
4.1	Process Sequence for CMOS Technology	3
4.2	Advanced CMOS Processes	2
4.3	Design	2
4.4	Rule for NMOS and CMOS Technologies as "Constraint" for Layouts	2
5.0	Process Simulation	1
5.1	Use of SUPREM-IV ans STEP Simulators for process Design	4
5.2	Some Examples of actual technologies.	5

Mr.S.Saravanan- saravanan.s@ksrct.ac.in

70 PAC 001	English for Research Paper	Category	L	Т	Р	Credit
70 PAC 001	Writing	AC	2	0	0	0

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability	Understand
CO2	Learn about what to write in each section	Understand
CO3	Understand the skills needed when writing a Title	Understand
CO4	Understand the skills needed when writing the Conclusion	Understand
CO5	Ensure the good quality of paper at very first-time submission	Apply

Mapping with Programme Outcomes

COs		POs						
COS	1	2	3	4	5	6		
CO1	3	3	2	3	3	3		
CO2	3	3	2	3	3	3		
CO3	3	3	2	3	3	3		
CO4	3	3	2	3	3	3		
CO5	3	3	2	3	3	3		
3 - St	rong; 2	2 - Med	dium; 1	1 - Son	пе			

Assessment Pattern

Bloom's	Continuous Assess	ment Tests (Marks)
Category	1	2
Remember	50	40
Understand	50	50
Apply	-	10
Analyse	-	-
Evaluate	-	-
Create	-	-
Total	100	100

CP2

Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2025							
	Common to all Branches							
	1			sh for Rese				
Semester	ŀ	lours/Wee		Total	Credit		aximum Ma	
Comester	L	Т	Р	Hours	С	CA	ES	Total
l	2	0	0	30	0	100	_	100
Introduction to Research Paper Writing Planning and Preparation, Word Order, Breaking up Long Sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness.								[6]
Paraphras	Nho Did W ng and Plag			ur Findings Paper, Abst			sizing,	[6]
Abstract, I Writing a R Check.	are needed (ey Skills a eview of the	re Needed	when Wri	, Key Skills ting an Intr Results, Disc	oduction, s	skills neede	ed when	[6]
Skills are N	needed whe			, Skills Nee sion,Skills a				[6]
				to Ensure	paper is a			[6]
						T	otal Hours	30
Text book								
1 Adria								
2 Day								
Reference	(s):			-		•		
1. Gold	bort R Writii	ng for Scien	ce, Yale Ur	niversity Pre	ss (availabl	e on Googl	e Books) 20	06.
2. High		ndbook of V	Vriting for t	he Mathem	atical Scier	ices, SIAM	l. Highman's	s book
3. Phill	Williams, Ad	dvanced Wr	iting skills f	or students	of English, l	Rumian Pu	blishers, 20°	18.
4. Sudl	nir S. Pandh	ye, English	Grammar a	and Writing :	Skills, Notio	n Press, 20)17.	

70 PVL 1P1	VLSI Laboratory I	Category	L	T	Р	Credit
/UPVL IFI	VESI Laboratory i	PC	0	0	4	2

- To apply Verilog HDL to design and simulate combinational and sequential digital circuits
- To develop parameterized and reusable hardware modules including FSMs and IP cores.
- To analyze and optimize arithmetic subsystems such as adders and multipliers for performance and power efficiency
- To implement pipelined and application-specific digital systems on FPGA platforms
- To interface FPGA with sensors and peripherals to build real-time embedded applications like smart home and health monitoring systems.

Pre-requisites

• Courses on Digital System design and Verilog HDL at UG Level

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design, simulate, and verify digital circuits using Verilog HDL with waveform and testbench analysis.	Apply
CO2	Implement parameterized FSMs and custom IP cores for modular hardware design.	Apply
CO3	Analyze and synthesize optimized arithmetic circuits for low power and high performance.	Apply
CO4	Deploy pipelined and application-specific digital systems on FPGA using suitable design tools.	Apply
CO5	Integrate FPGA-based designs with sensors and implement real-time systems in domains like healthcare, automation, and image processing.	Apply

Mapping with Programme Outcomes

Cos	POs							
COS	1	2	3	4	5	6		
CO1	3	3	3	2	2	3		
CO2	3	3	3	2	2	3		
CO3	3	3	3	2	2	3		
CO4	3	3	3	2	2	3		
CO5	3	3	3	2	2	3		
3 - St	rong; 2	2 - Med	lium; 1	- Som	e			

Assessment Pattern

7 to o o o o o i i o i i o i i o i i					
Bloom's Category		nts Assessment arks)	Model Examination	End Sem Examination	
Category	Lab	Activity	(Marks)	(Marks)	
Remember	-	-	-	-	
Understand	-	-	20	20	
Apply	50	25	80	80	
Analyse	-	-	-	-	
Evaluate	-	-	-	-	
Create	-	-	-	-	
Total	50	25	100	100	

C.P. R.

Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2025							
			M.E	-VLSI Desi	gn			
			70 PVL 1P	1 – VLSI La	boratory I			
Semester	ŀ	Hours/Weel	K	Total	Credit	Ma	ximum Mai	rks
Semester	L T P Hours C CA ES Total							
I	0	0	4	60	2	60	40	100

List of Experiments

- 1. Design and Simulation of Basic Combinational Circuits using Verilog HDL and test benches and waveform analysis
- 2. Design and Simulation of Sequential Circuits using Verilog HDL and test benches and waveform analysis
- 3. Design and Implementation of parameterized Finite State Machines (FSM) in Verilog HDL
- 4. Design and Analysis of Low Power, High-Speed Adders using Verilog HDL
- 5. Design and Implementation of Optimized Multiplier Architectures
- 6. Implementation of Arithmetic Logic Unit (ALU) with pipelining on FPGA
- 7. FPGA-based Implementation of Face/Object Detection Algorithm for Image Processing
- 8. Design and Deployment of Smart Home Control System using FPGA
- 9. Implementation of Health Monitoring System using FPGA and Sensors
- 10. Design and Synthesis of Parameterized IP Cores in Verilog HDL

Course Designer(s)

Dr.D.Mugilan - mugilan@ksrct.ac.in

CPL

70 PVL 1P2	Analog IC Design	Category	L	Т	Р	Credit
	Laboratory	PC	0	0	4	2

- To carry out a detailed analog circuit design starting with transistor characterization and finally realizing an IA design.
- To apply various stages of design, exposure to state of art CAD VLSI tool in various phases of experiments designed
- To bring out the key aspects of each important module in the CAD tool including the simulation
- To design differential amplifier and analyze the performance
- To design layout, LVS and parasitic extracted simulation using CAD tools

Pre-requisites

Courses on Semiconductor Devices and Circuits and Linear IC Applications at UG Level

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design digital and analog circuit using CMOS given a design specification.	Analyse
CO2	Design and carry out time domain and frequency domain simulations of simple analog building blocks, study the pole zero behaviors and compute the input/output impedances	Analyse
CO3	Develop layout for the CMOS circuit	Analyse
CO4	Analyze the performance of different amplifiers	Analyse
CO5	Use EDA tools for Circuit Design	Analyse

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	3	3	3	2	3		
CO2	3	3	3	3	2	3		
CO3	3	3	3	3	2	3		
CO4	3	3	3	3	2	3		
CO5	3	3	3	3	2	3		
3	3 - Stro	ng; 2 -	Mediu	m; 1 -	Some			

Assessment Pattern

Bloom's		nts Assessment arks)	Model Examination	End Sem Examination	
Category	Lab	Activity	(Marks)	(Marks)	
Remember	-	-	-	-	
Understand	-	-	20	20	
Apply	50	25	80	80	
Analyse	-	-	-	-	
Evaluate	-	-	-	-	
Create	-	-	-	-	
Total	50	25	100	100	

CP2

Syllabus								
K.S.Rangasamy College of Technology – Autonomous R2025								
			ME	-VLSI Desi	an			
		70 PV	/L 1P2 - Ana	alog IC Des	ign Labora	itory		
Compotor	ŀ	Hours/Weel	k	Total	Credit	Ma	ximum Mai	ks
Semester L T P Hours C CA ES Total							Total	
l l	0 0 4 60 2 60 40 100							

List of Experiments:

CYCLE-I

- 1. Extraction of process parameters of CMOS process transistors
 - a. Plot ID vs. VGS at different drain voltages for NMOS, PMOS.
 - b. Plot ID vs. VGS at particular drain voltage for NMOS, PMOS and determine Vt.
 - c. Plot log ID vs. VGS at particular gate voltage for NMOS, PMOS and determine IOFF and sub- threshold slope.
 - d. Plot ID vs. VDS at different gate voltages for NMOS, PMOS and determine Channel length modulation factor.
 - e. Extract Vth of NMOS/PMOS transistors (short channel and long channel). Use VDS of appropriate voltage To extract Vth use the following procedure.
 - a. Plot gm vs VGS using SPICE and obtain peak gm point.
 - b. Plot y= ID/(gm) as a function of VGS using SPICE.
 - c. Use SPICE to plot tangent line passing through peak gm point in y (VGS) plane and determine Vth.
 - f. Plot lo vs. Vos at different drain voltages for NMOS, PMOS, plot DC load line and calculate gm, gds, gm/gds, and unity gain frequency. Tabulate result according to technologies and comment on it.
- 2. CMOS inverter design and performance analysis
 - a. i. Plot VTC curve for CMOS inverter and thereon plot dVout vs. dVin, and determine transition voltage and gain g. Calculate VIL, VIH, NMH, NML for the inverter.
 - ii. Plot VTC for CMOS inverter with varying VDD.
 - iii. Plot VTC for CMOS inverter with varying device ratio.
- b. Perform transient analysis of CMOS inverter with no load and with load and determine propagation delay tpHL, tpLH, 20%-to-80% rise time tr and 80%-to-20% fall time tf.
 - c. Perform AC analysis of CMOS inverter with fanout 0 and fanout 1.
- 3. Use spice to build a three stage and five stage ring oscillator circuit and compare its frequencies.
- 4.Use FFT and verify the amplitude and frequency components in the spectrum.

CYCLE-II

- 4. Single stage amplifier design and performance analysis
 - a. Plot small signal voltage gain of the minimum-size inverter in the technology chosen as a function of input DC voltage. Determine the small signal voltage gain at the switching point using spice and compare the values for two different process transistors.
 - b. Consider a simple CS amplifier with active load, with NMOS transistor as driver and PMOS transistor as load.
 - Establish a test bench to achieve VDSQ=VDD/2.

- i) Determine small signal voltage gain, -3dB BW and GBW of the amplifier
- ii) using small signal analysis in spice, considering load capacitance.
- iii) Plot step response of the amplifier with a specific input pulse amplitude.
- iv) Derive time constant of the output and compare it with the time constant resulted from 3dB Band Width.
- v) Use spice to determine input voltage range of the amplifier
- vi) Calculate input bias voltage for a given bias current.
- vii) Use spice and obtain the bias current. Compare with the theoretical value
- 5. Three OPAMP Instrumentation Amplifier (INA).

Use proper values of resistors to get a three OPAMP INA with differential-mode voltage gain=10. Consider voltage gain=2 for the first stage and voltage gain=5 for the second stage.

- i. Draw the schematic of op-amp macro model.
- ii. Draw the schematic of INA.
- iii. Obtain parameters of the op-amp macro model such that it meets a given specification for:
 - i. low-frequency voltage gain,
 - ii. unity gain BW (fu),
 - iii. input capacitance,
 - iv. output resistance,
 - v. CMRR
- iv. Draw schematic diagram of CMRR simulation setup.
- v. Simulate CMRR of INA using AC analysis (it's expected to be around 6dB below CMRR of OPAMP).
- vi. Plot CMRR of the INA versus resistor mismatches (for resistors of second stage only) changing from -5% to +5% (use AC analysis). Generate a separate plot for mismatch in each resistor pair. Explain how CMRR of OPAMP changes with resistor mismatches.
- vii. Repeat (iii) to (vi) by considering CMRR of all OPAMPs with another low frequency gain setting.
- 6. Use Layout editor.
 - a. Draw layout of a minimum size inverter using transistors from CMOS process library. Use Metal-1 as interconnect line between inverters.
 - b. Run DRC, LVS and RC extraction. Make sure there is no DRC error.
 - c. Extract the netlist. Use extracted netlist and obtain tpHL, tpLH for the inverter using Spice.
 - d. Use a specific interconnect length and connect and connect three inverters in a chain.
 - e. Extract the new netlist and obtain teat and tee of the middle inverter.
 - f. Compare new values of delay times with corresponding values obtained in part 'c'.
- Design a differential amplifier with resistive load using transistors from CMOS process library that meets a given specification for the following parameter
 - a. low-frequency voltage gain,
 - b. unity gain BW (fu),
 - c. Power dissipation
 - i. Perform DC analysis and determine input common mode range and compare with the theoretical values.
 - ii. Perform time domain simulation and verify low frequency gain.
 - iii. Perform AC analysis and verify.

Course Designer(s)

Mr.R.Poovarasan- Poovarasanr@ksrct.ac.in

CPR

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215 (An Autonomous Institution affiliated to Anna University)

M.E. / M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted in 2025-2026)

SECOND SEMESTER

S.No.	Course	Name of the	Duration of	Weightage of Marks			Minimum Ma for Pass in Semeste Exam	End
0.110.	Code	Course	Internal Exam	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total
			-	THEORY	1			1
1.	70 PVL 201	Solid State Device Modelling	2	40	60	100	45	100
2.	70 PVL 202	VLSI Design Automation	2	40	60	100	45	100
3.	70 PVL 203	VLSI Testing	2	40	60	100	45	100
4.	70 PVL 204	ASIC Design	2	40	60	100	45	100
5.	70 PVL E3*	Professional Elective II	2	40	60	100	45	100
6.	70 PVL E4*	Professional Elective III	2	40	60	100	45	100
7.	70 PAC 002	Disaster Management	2	100	_	100	-	100
			PF	RACTICAL				
8.	70 PVL 2P1	VLSI Laboratory II	3	60	40	100	45	100
9.	70 PVL 2P2	Term Paper and Seminar	3	100	00	100	-	100

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

CPR

^{**} End semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for theory End Semester Examination and 40 marks for practical End semester Examination.

70 PVL 201	Solid State device	Category	L	Т	Р	Credit
10 F V L 201	Solid State device	PC	3	0	_	3
	Modelling and Simulation	FC	٦	0	0	3

- To apply the knowledge of device physics in modeling of integrated diode.
- To analyze and model MOS capacitor.
- To analyze and model MOSFET, FINFET and UTB.
- To analyze and model MESFET, HBT, HEMT MODFET
- To analyze and model Optoelectronic Devices

Pre-requisites

Semiconductor devices and Circuits

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire the knowledge of modelling of integrated diode	Understand
CO2	Model and simulate MOS capacitor for different values of process and operating parameters	Apply
CO3	Model and simulate SPICE, EKV and BSIM model of MOSFETs	Analyse
	Acquire the knowledge of modelling Sol, multigate MOSFET, UTB and FINFET devices	Apply
CO5	Acquire the knowledge of modelling of Optoelectronic devices	Apply

Mapping with Programme Outcomes

COs)s			
COS	1	2	3	4	5	6
CO1	3	3	-	-	2	3
CO2	3	3	3	3	2	3
CO3	3	3	-	3	2	3
CO4	3	3	-	-	2	3
CO5	3	3	3	3	2	3
3 - St	rong; 2	2 - Med	lium; 1	- Some	Э	

Bloom's	Continuous Assessm	ent Tests (Marks)	End Sem
Category	1	2	Examination (Marks)
Remember	14	6	10
Understand	14	6	10
Apply	32	38	70
Analyse	-	10	10
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangaeamy College of Technology,
Tiruchengode - 637 215.

Passed in BoS Meeting held on 13/06/2025 Approved in Academic Council Meeting held on 19/07/2025

Syllabus								
	K.S.	Rangasam		of Technolo		omous R2	025	
				-VLSI Desi				
				Device Mo				
Semester	<u>,</u>	Hours/Wee		Total	Credit	-	ximum Mar	_
	L	T	Р	Hours	C	CA	ES	Total
	3	0	0	45	3	40	60	100
Introduction to Semiconductor Physics and Diode Modelling Review of Quantum Mechanics - Boltzman transport equation - Continuity equation - Poisson equation. Junction and Schottky diodes in monolithic technologies - static and dynamic behavior - small and large signal models, SPICE modeling and simulation of PN junction and Schottky diode.					[9]			
Integrated I Band diagra depletion the Characterist	Integrated MOS Capacitance Band diagram- flat band condition and flat band voltage-surface accumulation, surface depletion threshold condition and threshold voltage, charge versus gate voltage, MOS C-V Characteristics, Poly Si gate depletion-effective Increase in Tox.				[9]			
NMOS and device equa Characterist for cost, spe Threshold v thickness Ar	Integrated MOS Transistor NMOS and PMOS Transistor - Threshold voltage - Threshold voltage equations - MOS device equations - Basic DC equations Second order effects - Small signal AC Characteristics- MOS models SPICE model, EKV Model, BSIM Model. Technology scaling for cost, speed and power consumption, Subthreshold Current —Subthreshold Swing, Threshold voltage Roll Off-Short Channel Leakage, reducing gate insulator electrical thickness And Tunneling Leakage, Short Channel Effects. Ultra Thin body, SOI and Multigate MOSFET - FINFET. Compact Model for Circuit Simulation using Verilog A					[9]		
Advanced Semiconductor Devices MESFETs, HBTs, HEMTs, MOSFETs.				[9]				
Optoelectronics Devices Light Emitting Diodes, Lasers, Photoconductors, Junction Photodiodes, Avalanche Photodiodes, Solar Cells					[9]			
Total Hours					45			
	Text Book(s):							
1. Tyagi	M S, "Introd	luction to S	emi-conduc	tor Material	s and Devic	ces", John V	Viley, 2008	
2. S. A. N 2012	2. S. A. Neamen and D. Biswas, Semiconductor Physics and Devices, 4 th Edition, TMH, 2012							
Reference		0	t O : t	I = = 4 = = - 1	and and	Edition DU	11 0040	
1. P. Bh	attacharya,	Semicondi	uctor Optoe	lectronics D	evices, 2 nd	Edition, PH	II, 2019.	

^{*}SDG 4: Quality education.

^{**}SDG 9: Promote inclusive and sustainable industrialization.

Course Contents and Lecture Schedule					
S. No.	Topics	No. of hours			
1.0	Introduction to Semiconductor Physics and Diode Modelling				
1.1	Review of Quantum Mechanics	1			
1.2	Boltzman transport equation	1			
1.3	Continuity equation	1			
1.4	Poisson equation	1			
1.5	Junction and Schottky diodes in monolithic technologies	2			
1.6	static and dynamic behavior	1			
1.7	small and large signal models	1			
1.8	SPICE modeling and simulation of PN junction and Schottky diode	1			
2.0	Integrated MOS Capacitance				
2.1	Band diagram	1			
2.2	flat band condition and flat band voltage-surface accumulation	1			
2.3	surface depletion	1			
2.4	threshold condition and threshold voltage	1			
2.5	charge versus gate voltage	1			
2.6	MOS C-V Characteristics	1			
2.7	Poly Si gate depletion	1			
2.9	Effective Increase In Tox	1			
3.0	Integrated MOS Transistor				
3.1	NMOS and PMOS Transistor	1			
3.2	Threshold voltage	1			
3.3	Threshold voltage equations	1			
3.4	MOS device equations - Basic DC equations Second order effects	1			
3.5	Small signal AC Characteristics- MOS models SPICE model	1			
3.6	EKV Model, BSIM Model	1			
3.7	Technology scaling for cost, speed and power consumption	1			
3.8	Subthreshold Current –Subthreshold Swing	1			
3.9	Threshold voltage Roll Off-Short Channel Leakage	1			
3.10	reducing gate insulator electrical thickness And Tunneling Leakage, Short Channel Effects. Ultra Thin body	1			
3.11	SOI and Multigate MOSFET - FINFET. Compact Model for Circuit Simulation using Verilog A	1			
4.0	Advanced Semiconductor Devices				
4.1	MESFETs	2			
4.2	HBTs	2			
4.3	HEMTs	2			
4.4	MOSFETs	2			
5.0	Optoelectronics Devices				
5.1	Light Emitting Diodes	2			
5.2	Lasers	1			
5.3	Photoconductors	2			

5.4	Junction Photodiodes	2
5.5	Avalanche Photodiodes	1
5.6	Solar Cells	1

Mrs.V.P.Kalaiyarasi- kalaiyarasivp@ksrct.ac.in

70 PVL 202	VLSI Design	Category	L	Т	Р	Credit
70 PVL 202	Automation	PC	3	0	0	3

- To acquire the knowledge in Design methodologies.
- To familiarize in the basic concepts of Layout
- To acquire the knowledge in various modeling
- To get exposed in the hardware model
- To get exposed in FPGA Technologies

Pre-requisites

• Analog and Digital CMOSVLSI design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply the graph and partitioning algorithms on addressing Computational complexity	Apply
CO2	Apply the floor planning and placement routing algorithms	Apply
CO3	Analyze modeling of various Designs	Analyse
CO4	Understand hardware models and scheduling	Apply
CO5	Interpret and analyze FPGA technologies and Apply the routing Algorithms for high-level transformation	Analyse

Mapping with Programme Outcomes

		P	Os		
1	2	3	4	5	6
3	3	3	2	3	3
3	3	2	2	3	3
3	3	3	2	2	2
3	3	3	3	2	2
3	3	2	3	3	3
	3 3 3	3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3 2 3 3 3	1 2 3 4 3 3 3 2 3 3 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3	1 2 3 4 5 3 3 3 2 3 3 3 2 2 3 3 3 3 2 2 3 3 3 2 2 3 3 3 2 3 3 3 2 3 3

Assessment Pattern

Bloom's	Continuous Assessm	ent Tests (Marks)	End Sem
Category	1	2	Examination (Marks)
Remember	20	15	30
Understand	30	10	20
Apply	10	20	30
Analyse	-	15	20
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Clah

			K.S. Ranga		ege of Technol		omous R 202	5	
					-VLSI Design	<u> </u>			
			Hours / We	eek	Total	Credit		Maximum Mar	ks
Sem	nester	L	Т	Р	Hours	С	CA	ES	Total
	II	3	0	0	45	3	40	60	100
Design Problen	n Automa ns	Design Me ation tools, A			ry, Computatior	nal Complexit	y, Tractable a	nd Intractable	[9]
Layout *		acement. Fl	oor plannin	g and Routir	ng Problems, Co	oncepts and A	Maorithms		[9]
Modelir			oor planning	g and redain	ig i robiomo, o		ugoria irrio		[~]
Gate Level Modeling and Simulation, Switch level modeling and simulation, Basic issues and Terminology, Binary — Decision diagram, Two — Level Logic Synthesis					i	[9]			
Interna		entation of			llocation, Assignent problem, l				[9]
MCM t	al Desig technolo stom ap	gn cycle for ogies, MCM proaches, F	l physical d Routing –Ma	lesign cycle aze routing,	nd routing for s , Partitioning, F Multiple stage ammable MCN	Placement — routing, Topo	Chip array b	ased and	[9]
Pin — Distribution and routing, routing and programmable MCM's. Total Hours							T	otal Hours	45
	Book(s)	:							
Text I									
			hms for VLS	SI Design Au	ıtomation", Johi	n Wiley 1999.			
	S.H.Ge	rez, "Algorit	"Algorithms		utomation", John	•	B rd Edition, Spi	ringer	
1.	S.H.Ge Naveed Internation	rez, "Algorit I Sherwani, tional Editio :	"Algorithms n.	for VLSI Ph	ysical Design A	Automation", 3			
1.	S.H.Ge Naveed Internation	rez, "Algorit I Sherwani, tional Editio :	"Algorithms n.	for VLSI Ph	<u> </u>	Automation", 3			

*SDG: 4- Quality Education

**SDG: 8 - Decent work and Economic growth

C.P.L

Course Contents and Lecture Schedule

S.No	Topic	No. of Hours
1	Introduction to Design Methodologies	
1.1	Design Automation tools	1
1.2	Data structure for the representation of Graphs	1
1.3	Computational complexity	1
1.4	Examples of graph algorithms	2
1.5	Combinational optimization problems	1
1.6	Decision problems	1
1.7	Complexity classes & Consequences	1
1.8	NP-Completeness and NP-hardness	1
2	Layout	
2.1	Layout Compaction: Design rules & symbolic layout	1
2.2	Algorithms for Constrained graph compaction	1
2.3	Placement: Circuit representation & Wire length Estimation	1
2.4	Placement algorithms	1
2.5	Floor planning	2
2.6	Routing Problems: Area routing & channel routing	1
2.7	Introduction to global routing and Algorithms for global routing	2
3	Modeling	
3.1	Gate Level Modeling and Simulation: Signal, Gate modeling & Delay modeling	1
3.2	Connectivity modeling, Compiler & event driven simulation	1
3.3	Switch level modeling and simulation: Connectivity and signal modeling	1
3.4	Simulation mechanisms	1
3.5	Basic issues and Terminology	1
3.6	Binary – Decision diagram	2
3.7	Two – Level Logic Synthesis: Problem definition and analysis	1
3.8	A Heuristic based in ROBDDs	1
4	Hardware Models	
4.1	Internal representation of the input algorithm	2
4.2	Allocation, Assignment and Scheduling	2
4.3	Some Scheduling Algorithms	2
4.4	Some aspects of Assignment problem	2
4.5	High – level Transformations	1
5	FPGA Technologies	
5.1	Physical Design cycle for FPGA's partitioning	1
5.2	Routing for segmented and staggered models	1
5.3	MCM technologies, MCM physical design cycle	1
5.5	Partitioning, Placement – Chip array based and full custom approaches	1
5.6	Routing –Maze routing	1
5.7	Multiple stage routing	1

CPR

5.8	Topologic routing	1
5.9	Integrated Pin – Distribution and routing, routing and programmable MCM's	1

Mr. A. Balachandran - <u>abalachandran@ksrct.ac.in</u>

C.P.L

70 PVL 203	VLSI Testing	Category	L	Т	Р	Credit
70 PVL 203		PC	3	0	0	3

- To introduce the VLSI testing
- To introduce the logic and fault simulation and testability measures
- To study the test generation for combinational and sequential circuits
- To study the design for testability
- To study the fault diagnosis

Pre-requisites

Analog and Digital CMOS VLSI design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basics of VLSI testing	Remember
CO2	Discuss logic simulation techniques and perform fault simulation to detect potential faults in VLSI designs	Understand
CO3	Evaluate testability measures and apply Design for Testability (DFT) principles to enhance fault detection in digital systems.	Analyse
CO4	Examine floor-planning techniques, including block placement, routing, and clock distribution for optimized VLSI design.	Analyse
CO5	Analyze the techniques used for fault diagnosis in VLSI systems and apply fault detection methods for enhanced system reliability.	Analyse

Mapping with Programme Outcomes

COs	POs							
	1	2	3	4	5	6		
CO1	3	3	2	3	3	3		
CO2	3	3	3	2	3	3		
CO3	3	2	3	3	3	3		
CO4	3	3	3	3	2	3		
CO5	3	3	3	3	3	3		
3 - Strong; 2 - Medium; 1 - Some								

Assessment Pattern			
Bloom's	Continuous Assessn	nent Tests (Marks)	End Sem
Category	1	2	Examination (Marks)
Remember	30	20	30
Understand	30	10	20
Apply	-	20	20
Analyse	-	10	30
Evaluate	-	-	
Create	-	-	
Total	60	60	100

C.P.L

Syllabus	V C	Danassam	v Callaga a	f Tachnalas	n. Autonor	maua B202	E	
	N.5	.Rangasam		t i ecnnolog -VLSI Desig	<u>ıy – Autonor</u> n	nous R2U2	5	
				203-VLSI Te				
• .	Н	lours/Week		Total	Credit	Ma	ximum Mark	s
Semester	L	Т	Р	Hours	С	CA	ES	Total
	3	0	0	45	3	40	60	100
Introduction to Introduction, N Economics an	/LSI Testing d Product Q	uality, Fault I	Modeling, R	elationship A			ng, Test	[9]
Logic & Fault Simulation for for True Value	Design Verifi and Fault S	cation and T imulation, So	est Evaluation	on, Modeling llability and (Observability		Algorithms	[9]
Test Generati Introduction t Combinationa Circuits, Test	o Test Ger l Circuits, To Generation fo	neration-Ove est Generati	rview of T on for Com	esting in Enbinational C	Digital Circu Circuits, Intro	duction to	Sequential	[9]
Design for Te Design for Tes Self-Test, Rar	stability Basio				signs, Scan	Architecture	e, Built in	[9]
Fault Diagnosis Introduction and Basic Definitions, Fault Models for Diagnosis, Generation of Vectors for Diagnosis, Combinational Logic Diagnosis, Scan Chain Diagnosis, Logic BIST Diagnosis.					[9]			
							Total Hours	45
Text Book(s): 1. Michael L. Mixed-Sign		nd Vishwani cuits",2020	D. Agrawal	"Essentials	of Electronic	c Testing fo	or Digital, Me	mory, an
2. Niraj K Jha	and Sandee	ep Gupta "Te	sting of Digi	tal Systems"	,2023			
References:								
2017	0	Ü	·			•	Architectures'	
2. Michael L. Signal VLSI	Bushnell and Circuits" Klu	l Vishwani D ıwer Academ	. Agrawal, "I nic Publisher	Essentials of rs, 2017.	Electronic T	esting for D	igital, Memor	y & Mixed
3. Niraj K. Jha	a and Sande	ep Gupta, "T	esting of Dio	gital Systems	s", Cambridg	e University	Press, 2017.	

^{*} SDG 9 - Industry, Innovation, and Infrastructure

CPL

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1	Introduction to Testing	
1.1	Introduction to VLSI Testing	2
1.2	VLSI Testing Process and Test Equipment	2
1.3	Challenges in VLSI Testing	1
1.4	Test Economics and Product Quality	1
1.5	Fault Modelling	2
1.6	Relationship Among Fault Models	1
2	Logic & Fault Simulation & Testability Measures	
2.1	Simulation for Design Verification and Test Evaluation	2
2.2	Modelling Circuits for Simulation	2
2.3	Algorithms for True Value Simulation	2
2.4	Algorithms for Fault Simulation	2
2.5	Scoap Controllability and Observability	1
3	Test Generation for Combinational and Sequential Circuits	
3.1	Introduction to Test Generation	1
3.2	Overview of Testing in Digital Circuits	1
3.3	Fault Models for Combinational Circuits	2
3.4	Test Generation for Combinational Circuits	2
3.5	Introduction to Sequential Circuits	1
3.6	Test Generation for Sequential Circuits	1
3.7	Applications of Test Generation Techniques	1
4	Design for Testability	l.
4.1	Design for Testability Basics	2
4.2	Testability Analysis	2
4.3	Scan Cell Designs	1
4.4	Scan Architecture	1
4.5	Built-in Self-Test (BIST)	1
4.6	Random Logic BIST	1
4.7	DFT for Other Test Objectives	1
5	Fault diagnosis	
5.1	Introduction and Basic Definitions	2
5.2	Fault Models for Diagnosis	2
5.3	Generation of Vectors for Diagnosis	2
5.4	Combinational Logic Diagnosis	1
5.5	Scan Chain Diagnosis	1
5.6	Logic BIST Diagnosis	1

Kausalya.s_-kausalya@ksrct.ac.in

CPL

70 PVL 204	ASIC Design	Category	L	Т	Р	Credit
		PC	3	0	0	3

- To know on the types of ASIC design and ASIC library design
- To introduces the principles of design logic cells, I/O Cells and Interconnect architecture
- To analyze various programmable ASIC architecture with logic cells, I/O Cells and Interconnect architecture
- To analyze high performance algorithms for floor planning and placement and routing of cells in ASIC design
- To deal with the entire FPGA and ASIC design flow from the circuit and layout design point of view

Pre-requisites

Digital Logic Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply logical effort technique for predicting delay, delay minimization and FPGA architectures	Apply
CO2	Design logic cells and I/O cells	Apply
СОЗ	Analyze the various resources of recent FPGAs	Analyse
CO4	Use algorithms for floor planning and placement of cells, routing for optimization of power and speed and understand the concept of layout static time analyses	Apply
CO5	Analyze high performance algorithms available for ASICs	Analyse

Mapping with Programme Outcomes

COs	POs						
COS	1	2	3	4	5	6	
CO1	-	-	-	-	-	3	
CO2	-	-	-	2	-	3	
CO3	3	2	3	2	3	3	
CO4	3	2	3	3	2	3	
CO5	2	i	-	3	ī	3	
3 - Strong; 2 - Medium; 1 - Some							

Bloom's Category	Continuous Assess	End Sem Examination (Marks)	
	1	2	
Remember	10	10	10
Understand	35	35	60
Apply	15	10	20
Analyse	-	5	10
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

CPL

Passed in BoS Meeting held on 13/06/2025

Approved in Academic Council Meeting held on 19/07/2025

Sylla	Syllabus								
		K.S.	Rangasam				nomous R2	025	
	M.E-VLSI Design								
					L 204 - ASI			ximum Marks	
Sem	ester		Hours/Weel		Total	Credit			
		<u>L</u>	T	Р	Hours	C	CA	ES	Total
	<u> </u>	3	0	0	45	3	40	60	100
Introduction to ASIC'S, CMOS Logic and ASIC Library Design Types of Asics - Design Flow - Traditional and Physical Compiler based ASIC Flow- CMOS Transistors - Combinational Logic Cell - Sequential Logic Cell - Data Path Logic Cell - Transistors as Resistors - Transistor Parasitic Capacitance- Logical Effort.							[9]		
Prog ASIO Antif ALT I/O E	ramm L/O C fuse - ERA F Blocks.	able ASIC' ells Static Ram LEX - ALTE	s, Progra m - EPROM ERA MAX D	mable ASI and EEPF C & AC Inp	C Logic Ce ROM Techr	Ils and Pro	ogrammabl CTEL ACT-	e Xilinx LCA – Inputs - Xilinx	[9]
Arch	nitectur	e and Confi		ARTIX / Cy	vclone and I ed Systems		ra Scale / obing Tech	STRATIX niques.	[9]
Logi Tool	Logic Synthesis, Static Timing Analysis, Placement and Routing Logic Synthesis, Pre-Layout STA, Floor Planning Goals and Objectives, Floor Planning Tools, I/O Placement and Power Planning, Standard Cell Placement, Clock Tree Synthesis, Timing Optimization, Routing: Global Routing and Detailed Routing, post-layout STA.						[9]		
Syst SoC Com	em-on Desigr munica	-Chip Desi n Flow, Plat ation Archite	gn form-Based ectures, Hig	and IP Bas h Performa	sed SoC De	signs, Basi using Delta	c Concepts	of Bus-Based dulators. Case	[9]
								Total Hours	45
Text	book(s):							
1	M.J.S	S.Smith, "Ap	plication Sp	ecific Integ	rated Circui	ts", Pearso	n, 2003.		
2	Steve Kilts, "Advanced FPGA Design", Wiley Inter-Science,2006.								
Refe	rence(
 Roger Woods, John Mcallister, Dr. Ying Yi, Gaye Lightbod, "FPGA-Based Implementation of Signal Processing Systems", Wiley, 2008. 									
2.	2. J.Rabaey, "Low Power Design Essentials (Integrated Circuits and Systems)", Springer, 2009.					2009.			
3.	3. David Flynn, Rob Aitken, Alan Gibbons, Kaijian Shi, "Low Power Methodology Manual: For System-on-Chip Design (Integrated Circuits and Systems)" Springer, 2008.					-or			
4.	Yuan							mbridge Unive	rsity

^{*}SDG 9: Industry, Innovation, and Infrastructure

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Introduction to ASIC'S, CMOS Logic and ASIC Library Design	
1.1	Types of ASICs	2
1.2	Design Flow - CMOS Transistors	2
1.3	Combinational Logic Cell	1
1.4	Sequential Logic Cell	1
1.5	Data Path Logic Cell	1
1.6	Transistors as Resistors - Transistor Parasitic Capacitance	1
1.7	Logical Effort	1
2.0	Programmable ASIC's, Programmable ASIC Logic Cells and Programmab	le ASIC
2.1	Antifuse - Static Ram - EPROM and EEPROM Technology	2
2.2	ACTEL ACT	1
2.3	Xilinx LCA	1
2.4	ALTERA FLEX	1
2.5	ALTERA MAX	1
2.6	DC & AC Inputs and Outputs	1
2.7	Clock & Power Inputs	1
2.8	Xilinx I/O Blocks	1
3.0	Programmable ASIC Architecture	
3.1	Architecture and Configuration of ARTIX	2
3.2	Cyclone and KINTEX Ultra Scale	2
3.3	STRATIX FPGA	2
3.4	Micro-Blaze / NIOS Based Embedded Systems	2
3.5	Signal Probing Techniques	1
4.0	Logic Synthesis, Static Timing Analysis, Placement and Routing	
4.1	Logic Synthesis, Pre-Layout STA	1
4.2	Floor Planning Goals and Objectives, Floor Planning Tools	1
4.3	I/O Placement and Power Planning, Standard Cell Placement	2
4.4	Clock Tree Synthesis, Timing Optimization	2
4.5	Routing: Global Routing and Detailed Routing	1
4.6	Post-Layout STA	2
5.0	System-on-Chip Design	
5.1	SoC Design Flow	1
5.2	Platform-Based and IP Based SoC Designs	2
5.3	Basic Concepts of Bus-Based Communication Architectures	1
5.4	High Performance Filters using Delta-Sigma Modulators	2
5.5	Case Studies: Digital Camera, SDRAM, High Speed Data standards.	3

D.Dhanasekaran - dhanasekarand@ksrct.ac.in

CPR

70 PVL F21	Low Power VLSI Design	Category	L	Т	Р	Credit
70 PVL E21	Low Power VLSI Design	PE	3	0	0	3

- To identify sources of power in an IC
- To identify the power reduction techniques based on technology independent and technology dependent methods
- To identify suitable techniques to reduce the power dissipation
- To estimate power dissipation of various MOS logic circuits
- To develop algorithms for low power dissipation

Pre-requisites

Analog and Digital CMOS VLSI design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the power dissipation of MOS circuits	Understand
CO2	Design and analyze various MOS logic circuits	Understand
CO3	Apply low power techniques for low power dissipation	Analyse
CO4	Estimate the power dissipation of ICs	Apply
CO5	Develop algorithms to reduce power dissipation by software	Apply

Mapping with Programme Outcomes

COs	POs											
COS	1	2	3	4	5	6						
CO1	-	-	3	-	-	3						
CO2	3	-	3	2	-	3						
CO3	-	-	3	-	-	3						
CO4	-	-	3	-	-	3						
CO5	3	-	3	3	-	3						
3 - St	rong; 2	2 - Med	lium; 1	- Som	е	3 - Strong; 2 - Medium; 1 - Some						

Assessment Pattern

Bloom's	Continuous Assessme	End Sem	
Category	1	2	Examination (Marks)
Remember	30	15	30
Understand	30	10	20
Apply	-	20	30
Analyse	-	15	20
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

CP2

Syllabus									
	K.S.Rangasamy College of Technology – Autonomous R2025								
	M.E-VLSI Design								
70 PVL E21 – Low Power VLSI Design									
Seme	ester		Hours/Wee		Total			aximum Mar	
		L	T	Р	Hours	С	CA	ES	Total
	II 3 0 0 45 3 40 60							60	100
		ipation in			5		.	, ,	
				Sources of				of Power	[9]
			ET Devices	s – Basic Pr	incipie oi Lo	ow Power D	esign.		
		mization		Oimaviit I avva	II avv Davva	- Danieus - C	Nata Lawali	D	
				Circuit Leve Power Desi					[9]
			ower Desig		gii — VLSI	Subsystem	Design of	Adders,	
			CMOS Circ						
				for Low Pov	ver System	_ Reducing	Power Co	nsumntion	
				tial Logic, N					[9]
				Adiabatic T					[0]
		and Routi		, talabatio 1	ooriiinqaoo	i ilyoloai D	001911,11001	i laming,	
	Power Estimation								
Powe								[9]	
Level	I, –Log	ic Power Es	stimation –	Simulation F	Power Analy	sis –Probab	oilistic Powe	er Analysis	
				for Low Pov					
				avioral Lev	el Transfori	m –Algorith	ms for Lov	v Power –	[9]
Softw	Software Design for Low Power.							_	
	Total Hours 45						45		
	Text Book(s):								
	1. Kaushik Roy and S.C.Prasad, "Low Power CMOS VLSI Circuit Design", Wiley, 2000								
	2. J.B.Kulo and J.H Lou, "Low Voltage CMOS VLSI Circuits", Wiley 2019.								
Reference(s):									
James B.Kulo, Shih-Chia Lin, "Low Voltage SOI CMOS VLSI Devices and Circuits", John Wiley									
and Sons, Inc. 2001									
2	2. J.Rabaey, "Low Power Design Essentials (Integrated Circuits and Systems)", Springer, 2009								
3.	3. David Flynn, Rob Aitken, Alan Gibbons, Kaijian Shi, "Low Power Methodology Manual: For System-on-Chip Design (Integrated Circuits and Systems)", Springer, 2008.							ı: For	
	Yuan Taur and TakH.Ning, "Fundamentals of Modern VLSI Devices", Cambridge University								
4.		5, 2016.	iani i.iviiily,	i unuamen	tais oi iviou	CIII VLSI DE	evices, Ca	inblidge Offi	voisity
	1 1033	, 2010.							

Course 0	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1	Power Dissipation in CMOS	
1.1	Hierarchy of Limits of Power	1
1.2	Sources of Power Consumption	2
1.3	Physics of Power Dissipation in CMOS FET Devices	2
1.4	Various power Dissipation	2
1.4	Basic Principle of Low Power Design	2
2	Power Optimization	<u> </u>
2.1	Logic Level Power Optimization	1
2.2	Circuit Level Low Power Design	1
2.3	Gate Level Low Power Design	2
2.4	Architecture Level Low Power Design	1
2.5	VLSI Subsystem Design of Adders	1
2.6	Multipliers	1
2.7	PLL	1
2.8	Low Power Design	1
3	Design of Low Power CMOS Circuits	
3.1	Computer Arithmetic Techniques for Low Power System	1
3.2	Reducing Power Consumption in Combinational Logic, Sequential Logic, Memories	2
3.3	Low Power Clock	2
3.4	Advanced Techniques	1
3.5	Special Techniques, Adiabatic Techniques	2
3.6	Physical Design, Floor Planning, Placement and Routing	1
4	Power Estimation	
4.1	Power Estimation Techniques	1
4.2	Circuit Level, Gate Level	2
4.3	Architecture Level, Behavioral Level	2
4.4	Logic Power Estimation	2
4.5	Simulation Power Analysis	1
4.6	Probabilistic Power Analysis	1
5	Synthesis and Software Design for Low Power CMOS Circuits	I
5.1	Synthesis for Low Power	2
5.2	Behavioral Level Transform	3
5.3	Algorithms for Low Power	2
5.4	Software Design for Low Power	2

Mrs.V.P.Kalaiyarasi-kalaiyarasivp@ksrct.ac.in

70 PVL E22	Digital Image Processing	Category	L	Т	Р	Credit
	Digital illiage Flocessing	PE	3	0	0	3

- To understand a fundamental understanding of image concepts and transformations.
- To introduce techniques for image enhancement and restoration.
- To impart comprehensive knowledge of segmentation and recognition methods.
- To develop a thorough understanding of image compression strategies.
- To explore video processing and motion estimation techniques.

Pre-requisites

Image Processing

Course O	Course Outcomes					
On the suc	On the successful completion of the course, students will be able to					
CO1	Describe digital image fundamentals and different transforms.	Understand				
CO2	Discuss the basics of Image enhancement and restoration techniques of images.	Apply				
CO3	Explain the techniques of image segmentation and recognition.	Analyse				
CO4	Discuss about color image processing and image compression.	Analyse				
CO5	Describe about video processing systems.	Apply				

Mapping with Programme Outcomes

COs	POs						
	1	2	3	4	5	6	
CO1	3	3	3	2	3	3	
CO2	3	3	3	2	3	3	
CO3	3	3	3	2	3	3	
CO4	3	3	3	2	3	3	
CO5	3	3	3	2	3	3	
3 - Stro	3 - Strong; 2 - Medium; 1 - Some						

Assessment Pattern

Bloom's Category	Continuous Assess	End Sem	
Discin a Sategory	1	2	Examination (Marks)
Remember	20	10	30
Understand	20	20	30
Apply	20	20	30
Analyse	-	10	10
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

CPR

Syllabus								
	K.S.	Rangasam		of Technolo		nomous R2	025	
				-VLSI Desi				
	 			igital Imag				
Semester	ŀ	lours/Weel		Total		Maximum		
	L	T	Р	Hours	С	CA	ES	Total
II	3	0	0	45	3	40	60	100
	ge Fundam				Juantizatia	n Poois Pol	otionobin	
				npling and (ations-Introd				[9]
								[9]
DFT – Properties of 2D Fourier Transform – FFT – Separable Image Transforms -Walsh – Hadamard – Discrete Cosine Transform – Haar - Slant – Karhunen Loeve Transforms.								
	ancement							
Basic Gray	/ Level Tra	nsformation	ns – Histog	ıram Equali	zation – H	istogram M	latching -	
				Sharpeni				[9]
	gradation / I	Restoration	n Process-	Mean Filter	rs — Order	·— Statistic	s Filters-	[O]
Adaptive	venes Eilten	ina a Minaina	Maan	C	Cilkanina	Canatuain		
				Square Erro Geometric T			ied Least	
	mentation			Occinctio i	Tarisionna			
				and Bound	ary Detect	ion – Regio	on Based	
				tion – Erosic				[9]
	n Patterns a	and Pattern	Classes. F	Recognition	Based on I	Decision –	Theoretic	
Methods.								
	npression &							
				n Length E Color Fundai				[0]
				cessing Pro				[9]
				entation Bas				
	s of Video							
				nage Format	ion models	: Three-dim	ensional	[9]
				Photometric	: Image For	mation, Sar	npling of	
Video signa	als, Filtering	operations						
Taratha a a lata						1	otal Hours	45
Textbook(s)		- Diahand		"D:-:t-1 l	D	·!" 4 ^[1]	litian Danie	
	ition, 2018.	ez, Richard	E. Woods,	"Digital Ima	ige Process	sing", 4 ⊨c	lition, Pears	on
		nentals of Di	nital Image	Processing"	New Editio	n Prentice	Hall of India	2016
2. Jain A.K., "Fundamentals of Digital Image Processing", New Edition, Prentice Hall of India, 2016. Reference(s):								
1 Yao W			and Ya-Qir	n Zhang ," Vi	ideo Proces	ssing and C	ommunicatio	ons",
	2. William K. Pratt, "Digital Image Processing", John Wiley, New York, 2016							
₂ Rafae		lez Richard	E. Woods,				Processing u	using
4. J.W. V		Itidimensior		Image, Vide	eo Process	ing and Co	oding", 2 nd E	dition,

CPR

Course Contents and Lecture Schedule					
S. No.	Topics	No. of hours			
1.0	Digital Image Fundamentals and Transforms				
1.1	Elements of Visual Perception	1			
1.2	Image Sampling and Quantization Basic Relationship between Pixels	1			
1.3	Basic Geometric Transformations	1			
1.4	Introduction to Fourier Transform and DFT	1			
1.5	Properties of 2D Fourier Transform	1			
1.6	FFT The state of t	1			
1.7	Separable Image Transforms, Walsh, Hadamard	1			
1.8	Discrete Cosine Transform	1			
1.9	Haar – Slant, Karhunen Loeve Transforms.	1			
2.0	Image Enhancement and Restoration				
2.1	Basic Gray Level Transformations	1			
2.2	Histogram Equalization, Histogram Matching	1			
2.3	Spatial Filtering, Smoothing Spatial Filters	1			
2.4	Sharpening Spatial Filters- Model of the Image Degradation / Restoration Process	1			
2.5	Mean Filters – Order – Statistics Filters- Adaptive Filters	1			
2.6	Inverse Filtering – Minimum Mean Square Error Filtering	1			
2.7	Constrained Least Squares Filtering	1			
2.8	Geometric Mean Filter	1			
2.9	Geometric Transformations	1			
3.0	Image Segmentation and Recognition				
3.1	Detection of Discontinuities	1			
3.2	Edge Linking and Boundary Detection	1			
3.3	Region Based Segmentation	1			
3.4	Morphological Operators: Dilation – Erosion	2			
3.5	Opening and Closing	1			
3.6	Image Recognition Patterns and Pattern Classes	1			
3.7	Recognition Based on Decision	1			
3.8	Theoretic Methods	1			
4.0	Image Compression& Color Image Processing				
4.1	Need for Data Compression, Huffman	1			
4.2	Run Length Encoding, Vector Quantization	1			
4.3	Transform Coding, JPEG Standard, MPEG	1			
4.4	Color Fundamentals – Color Models	1			
4.5	Basics of Full-Color Image	1			
4.6	Processing-Color Transformations	2			
4.7	Smoothing and Sharpening	1			
4.8	Image Segmentation Based on Color	1			
5.0	Basic Steps of Video Processing	·			
5.1	Analog Video, Digital Video	2			
5.2	Time-Varying Image Formation models	2			
5.3	Three-dimensional Motion Models	2			
5.4	Geometric Image Formation	2			
5.5	Photometric Image Formation	1			

5.6 Sampling of Video signals, Filtering operations	1
---	---

Dr.S.Malarkhodi - malarkhodi@ksrct.ac.

70 PVL E23	IP Based VLSI Design	Category	L	Т	Р	Credit
		PE	3	0	0	3

- To learn about IC manufacturing and fabrication.
- To analyse the combinational, sequential and subsystem design.
- To analyse the subsystem design.
- To learn about different floor planning techniques and architecture design.
- To introduce IP design security

Pre-requisites

Digital CMOS VLSI Design

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe the IC manufacturing with various fabrication process and Layout design techniques	Understand
CO2	Analyze the combinational logic networks and its functions	Apply
CO3	Design the sequential circuits and analyse the subsystem design performance	Apply
CO4	Describe the various floor planning techniques and architecture in VLSI.	Understand
CO5	Explain an IP based Protection of data and Privacy security.	Understand

Mapping with Programme Outcomes

COs	POs					
COS	1	2	3	4	5	6
CO1	3	-	3	-	-	3
CO2	3	-	3	3	-	3
CO3	3	_	3	3	-	3
CO4	3	3	3	3	-	3
CO5	3	3	3	-	3	3
3 - St	3 - Strong: 2 - Medium: 1 - Some					

Assessment Pattern					
Bloom's	Continuous Assess	End Sem			
Category	1	2	Examination (Marks)		
Remember	10	10	20		
Understand	25	25	40		
Apply	25	25	40		
Analyse	-	-	-		
Evaluate	-	-	-		
Create	-	-	-		
Total	60	60	100		

Syllabus								
	K.S.F	Rangasam	y College o			nomous R2	2025	
				-VLSI Desi				
	<u> </u>		PVL E23-					
Semeste	, <u> </u>	lours/Wee		Total	Credit		ximum Mai	
11	3	T	P	Hours	С	CA	ES	Total
	_	0	0	45	3	40	60	100
	VLSI and Its Fabrication							
Introduction -IC Manufacturing - CMOS Technology - IC Design Techniques - IP Based Design - Fabrication Process-Transistors - Wires and Vias - Fabrication Theory Reliability						[9]		
	Design and To		15151015 - 111	ies and via	s - Fablicat	ion meory	Reliability	
	tional Logic							
	es: Combinat		Functions -	Static Com	plementary	Gates - Sw	itch Logic	
	e Gate Circuit							[9]
	works-Stand							
	ect Design- I	Power Opti	mization- S	witch Logic	: Network- I	Logic Testi	ng.	
	m Design						_	
	al Machine -L							501
	- Power Opt							[9]
	ional Shifter PLA - Buses a					- image S	ensors —	
	nning and A			- Oubsyster	113 43 11 .			
	nning -Floor I			obal Interco	onnect - Flo	or Plan De	sian - off -	
	nections Arc							[9]
High Leve	l Synthesis -	Architectur	e for Low Po	ower - GAL	S Systems -	- Architectu	re Testing	
	onents - Des	sign Method	dologies - M	lultiprocess	or System -	on-chip De	esign	
Design S								
	se Based De						ata and	[9]
Privacy C	onstrained B	ased Wate	rmarking fo	r VLSI IP B	ased Protec		4-111	45
Textbook	/(c):					10	otal Hours	45
	yne Wolf, "M	odern VI SI	l Design: ID	hased Des	ian" 4 th Ed	ition Pranti	ice Hall of In	dia
	/ate Ltd., 201		i Design. IF		ngii, 4 Lu	idon, Fr e nd	ice i iaii oi ii	uia
			ak "Intellect	tual Proper	ty Protection	n in VI SI D	esians: The	orv and
2. Qu Gang, Miodrag Potkonjak, "Intellectual Property Protection in VLSI Designs: Theory and Practice", Springer, 2013.								
Reference(s):								
Marilyn Wolf "Modern Vici Design in Passed Design" 4th Edition Propries Hall of India Private								
1. Ltd., 2013.								
2. Swarup Bhunia, Sandip Ray, Susmita Sur-Kolay, "Fundamentals of IP and SoC Security:						Security:		
De:	sign,Verificati							
	bhat Mishra,							er, 2017.
I 4. I Ch	ariotte Stedm	an, "Moder	n VLSI Des	ıgn", Larser	า & Keller E	ducation, 2	U19	

Course (Course Contents and Lecture Schedule				
S. No.	Topics	No. of hours			
1.0	VLSI and Its Fabrication				
1.1	Introduction -IC Manufacturing	1			
1.2	CMOS Technology	1			
1.3	IC Design Techniques	1			
1.4	IP Based Design	1			
1.5	Fabrication Process	1			
1.6	Transistors	1			
1.7	Wires and VIAS	1			
1.8	Fabrication Theory Reliability	1			
1.9	Layout Design and Tools	1			
2.0	Combinational Logic Networks	•			
2.1	Logic Gates: Combinational Logic Functions	1			
2.2	Static Complementary Gates	1			
2.3	Switch Logic - Alternate Gate Circuits	1			
2.4	Low Power Gates	1			
2.5	Delay, Yield, Gates as IP	1			
2.6	Combinational Logic Networks	1			
2.7	Standard Cell Based Layout	1			
2.8	Combinational Network Delay, Logic and Interconnect Design	1			
2.9	Power Optimization, Switch Logic Network, Logic Testing.	1			
3.0	Subsystem Design				
3.1	Sequential Machine -Latch and Flip flop	1			
3.2	System Design and Clocking	1			
3.3	Performance Analysis	1			
3.4	Power Optimization, Design Validation and Testing	1			
3.5	Subsystem Design, Combinational Shifter	1			
3.6	Arithmetic Circuits	1			
3.7	High Density Memory, Image Sensors	1			
3.8	FPGA, PLA	1			
3.9	Buses and NoC, Data Paths, Subsystems as IP	1			
4.0	Floor Planning and Architecture Design				
4.1	Floor Planning, Floor Planning Methods	1			
4.2	Global Interconnect, Floor Plan Design	1			
4.3	Off -Chip Connections Architecture Design	1			
4.4	HDL, Register, Transfer Design	1			
4.5	Pipelining, High Level Synthesis	1			
4.6	Architecture for Low Power, GALS Systems	1			
4.7	Architecture Testing, IP Components	1			
4.8	Design Methodologies,	1			
4.9	Multiprocessor System, on-Chip Design	1			
5.0	Design Security	1			
5.1	IP In Reuse-Based Design	2			
5.2	Constrained Based IP Protection	2			
	•	•			

5.3	Protection of Data and Privacy	2
5.4	Constrained Based Watermarking for VLSI IP Based Protection	3

Mrs.K.Vanitha -vanitha@ksrct.ac.in

70 PVL E24	Genetic Algorithms for	Category	L	Т	Р	Credit
70 PVL E24	VLSI Design	PE	3	0	0	3

- To introduce the fundamental concepts of speech and audio signal processing, including signal characteristics and basic transformations.
- To explore various methods for analyzing and extracting important features from speech signals.
- To understand the principles of speech synthesis and recognition, along with their real-world applications.
- To study various techniques for processing, enhancing, and compressing audio signals.
- To explore the applications of speech and audio processing in various domains such as AI, healthcare, and telecommunications.

Prerequisite

• Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe the basic properties of speech and audio signals and apply fundamental signal processing techniques	Understand
CO2	Discuss speech feature extraction techniques such as LPC and MFCC for speech recognition applications.	Understand
CO3	Develop basic speech recognition models and explain the working of speech synthesis systems.	Apply
CO4	Apply noise reduction and audio enhancement techniques to improve signal quality	Apply
CO5	Compare different speech and audio processing methods in real-world applications	Analyse

Mapping with Programme Outcomes

COs		POs					
COS	1	2	3	4	5	6	
CO1	3	-	3	-	-	3	
CO2	3	-	3	3	-	3	
CO3	3	-	3	3	-	3	
CO4	3	3	3	3	_	3	
CO5	3	3	3	-	3	3	
3 - St	rong; 2	2 - Med	dium; 1	- Som	e		

Bloom's		sessment Tests irks)	End Sem Examination (Marks)
Category	Test 1	Test 2	
Remember	10	10	20
Understand	50	30	50
Apply	-	10	20
Analyse	-	10	10
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

CP2

Sylla	Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2025								
					-VLSI Desi	•			
					tic Algorith				
Sam	ester	}	lours/Weel		Total	Credit		ximum Mar	
Gein	ester	L	Т	Р	Hours	С	CA	ES	Total
	ll	3	0	2	45	3	40	60	100
			Algorithms						
Intro	duction	to GA Tecl	nnology - Si	imple GA al	gorithm -St	eady State	Algorithm -	Selection	[9]
			- Fitness S		ersion				
			VLSI Desi						
					ation - Part				[9]
1	Addomatic Routing - reclinology mapping for reGAs - Addomatic test generation - Genetic					[~]			
		rtitioning							
	Advanced Genetic Algorithms								
						[9]			
	Standard cell placement - GASP algorithm - Unified algorithm.								
	Genetic Algorithm for VLSI Testing Macro Cell Global routing - FPGA technology mapping - Circuit segmentation - Test [9]								
							segmentat	ion - Lest	[9]
			ne work - I	est genera	tion proced	ures.			
	lication		olioption of	CA Stand	ard call play	noment C	A for ATC	Droblom	roı
					ard cell placi ional Algorit		A IOI A I G -	Froblem	[9]
Enco	oung - r	Tilless Tull	Clion - GA	75 Convent	ional Algori		T	otal Hours	45
Tayti	book(s)	\•					- 10	tai ilouis	70
1.			r E MDudr	nick "Gono	tic Algorithm	n for \/LSLF	Dosign Lav	out and test	
'-			entice Hall,		ac Algorian	II IOI VLSI L	besign, Lay	out and test	
2.					actical Gene	tic Algorith	ms" 2 nd Fd	ition, John V	Viley &
	Sons,		Ode Lilen	riaupt, ric	otioai Geric	ao 7 agorian	113 2 Lu	idon, donin v	viicy a
Refe	Reference(s):								
		•	ulum. Macr	o Aurelio P	acheco. Ma	rlev Maria	B.R. Vellas	co. Marley N	/Jaria
1.	Ricardo Sal Zebulum, Macro Aurelio Pacheco, Marley Maria B.R. Vellasco, Marley Maria Bernard Vellasco "Evolution Electronics: Automatic Design of electronic Circuits and Systems								
	Genetic Algorithms", CRC press, 2001.								
2.					grated Circu	its", Addisc	n -Wesley,	2018	
	John	R.Koza, F	orrest H B	ennett, Dav	vid Andre,	Morgan Ku	fmann, "G	enetic Prog	ramming:
3.					rams", MİT				

Course (Course Contents and Lecture Schedule				
S. No.	Topics	No. of hours			
1.0	Overview of Genetic Algorithms				
1.1	Introduction to GA Technology	2			
1.2	Simple GA algorithm	1			
1.3	Steady State Algorithm	1			
1.4	Selection	1			
1.5	Crossover	1			
1.6	Mutation	1			
1.7	Fitness Scaling	1			
1.8	Inversion	1			
2.0	Genetic Algorithm for VLSI Design				
2.1	GA for VLSI Design	1			
2.2	Layout and Test automation	2			
2.3	Partitioning - Automatic Placement	2			
2.4	Automatic Routing	1			
2.5	Technology mapping for FPGAs	1			
2.6	Automatic test generation	1			
2.7	Genetic Multiway Partitioning	1			
3.0	Advanced Genetic Algorithms				
3.1	Hybrid genetic	2			
3.2	Genetic encoding	1			
3.3	Local improvement	1			
3.4	WDFR	1			
3.5	Comparison of CAs	1			
3.6	Standard cell placement	1			
3.7	GASP algorithm	1			
3.8	Unified algorithm	1			
4.0	Genetic Algorithm for VLSI Testing				
4.1	Macro Cell Global routing	2			
4.2	FPGA technology mapping	2			
4.3	Circuit segmentation	2			
4.4	Test generation in a GA frame work	2			
4.5	Test generation procedures	1			
5.0	Applications				
5.1	Power estimation	2			
5.2	Application of GA	2			
5.3	Standard cell placement	1			
5.4	GA for ATG	1			
5.5	Problem Encoding	1			
5.6	Fitness function	1			
5.7	GA vs Conventional Algorithm	1			
	<u>-</u>	<u> </u>			

Ms.V.P.Kalaiyarasi- kalaiyarasivp@ksrct.ac.in

70 PVL E25	Bio Signal Processing	Category	L	Т	Р	Credit
70 PVL E25	Bio Signal Frocessing	PE	3	0	0	3

- To Know the basic concept of signals and systems and their spectrums
- To analyze the Spectral estimation
- To apply the concept of adaptive filtering and their wavelets in bio signals
- To explain bio signal classification
- To Carry out multivariate component analysis

Pre-requisites

Digital Signal Processing

Course C	Course Outcomes					
On the su	ccessful completion of the course, students will be able to					
CO1	Know the characteristics basic signals, system and spectrums	Understand				
CO2	Analyze the Bio signals in time domain and spectral estimation	Analyse				
CO3	Analyze the Adaptive filtering and wavelet detection in ECG	Analyse				
CO4	Explain bio signal classification	Understand				
CO5	analyze the multivariate components in time frequency domains	Analyse				

Mapping with Programme Outcomes

COs			PC)s		
COS	1	2	3	4	5	6
CO1	3	3	3	3	-	-
CO2	3	3	3	3	-	-
CO3	3	3	3	3	3	-
CO4	3	3	3	3	3	-
CO5	3	3	3	3	-	-
3 - St	rong; 2	2 - Med	lium; 1	- Som	е	

Assessment Pattern

Bloom's	Continuous Asse	ssment Tests (Marks)	End Sem
Category	1	2	Examination (Marks)
Remember	20	20	20
Understand	20	20	40
Apply	10	10	20
Analyse	10	10	20
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

N.E. N.E. N.E. N.E. N.E.						
Semester						
Semester						
L T P Hours C CA ES						
II 3 0 0 45 3 40 60 Signal, System and Spectrum Characteristics of Some Dynamic Biomedical Signals, Noises-Random, Structured and Physiological Noises, Filters-IIR and FIR Filters, Spectrum- Power Spectral Density Function, Cross-Spectral Density and Coherence Function, Cepstrum and Homomorphic Filtering, Estimation of Mean of Finite Time Signals. Time Series Analysis and Spectral Estimation Time Series Analysis- Linear Prediction Models, Process Order Estimation, Non-Stationary Process, Fixed Segmentation, Adaptive Segmentation, Application in EEG, PCG and HRV Signals, Model Based ECG Simulator, Spectral Estimation-Blackman Tukey Method, Periodogram and Model Based Estimation, Application in Heart Rate Variability, PCG Signals. Adaptive Filtering and Wavelet Detection Filtering-LMS Adaptive Filter, Adaptive Noise Cancelling in ECG, Improved Adaptive Filtering in FECG, EEG and Other Applications in Bio Signals, Wavelet Detection in ECG-Structural Features, Matched Filtering, Adaptive Wavelet Detection, Detection of Overlapping Wavelets. Biosignal Classification and Recognition						
Signal, System and Spectrum Characteristics of Some Dynamic Biomedical Signals, Noises-Random, Structured and Physiological Noises, Filters-IIR and FIR Filters, Spectrum- Power Spectral Density Function, Cross-Spectral Density and Coherence Function, Cepstrum and Homomorphic Filtering, Estimation of Mean of Finite Time Signals. Time Series Analysis and Spectral Estimation Time Series Analysis- Linear Prediction Models, Process Order Estimation, Non-Stationary Process, Fixed Segmentation, Adaptive Segmentation, Application in EEG, PCG and HRV Signals, Model Based ECG Simulator, Spectral Estimation-Blackman Tukey Method, Periodogram and Model Based Estimation, Application in Heart Rate Variability, PCG Signals. Adaptive Filtering and Wavelet Detection Filtering-LMS Adaptive Filter, Adaptive Noise Cancelling in ECG, Improved Adaptive Filtering in FECG, EEG and Other Applications in Bio Signals, Wavelet Detection in ECG-Structural Features, Matched Filtering, Adaptive Wavelet Detection, Detection of Overlapping Wavelets. Biosignal Classification and Recognition	Total					
Characteristics of Some Dynamic Biomedical Signals, Noises-Random, Structured and Physiological Noises, Filters-IIR and FIR Filters, Spectrum- Power Spectral Density Function, Cross-Spectral Density and Coherence Function, Cepstrum and Homomorphic Filtering, Estimation of Mean of Finite Time Signals. Time Series Analysis and Spectral Estimation Time Series Analysis- Linear Prediction Models, Process Order Estimation, Non-Stationary Process, Fixed Segmentation, Adaptive Segmentation, Application in EEG, PCG and HRV Signals, Model Based ECG Simulator, Spectral Estimation-Blackman Tukey Method, Periodogram and Model Based Estimation, Application in Heart Rate Variability, PCG Signals. Adaptive Filtering and Wavelet Detection Filtering-LMS Adaptive Filter, Adaptive Noise Cancelling in ECG, Improved Adaptive Filtering in FECG, EEG and Other Applications in Bio Signals, Wavelet Detection in ECG-Structural Features, Matched Filtering, Adaptive Wavelet Detection, Detection of Overlapping Wavelets. Biosignal Classification and Recognition	100					
Time Series Analysis- Linear Prediction Models, Process Order Estimation, Non-Stationary Process, Fixed Segmentation, Adaptive Segmentation, Application in EEG, PCG and HRV Signals, Model Based ECG Simulator, Spectral Estimation-Blackman Tukey Method, Periodogram and Model Based Estimation, Application in Heart Rate Variability, PCG Signals. Adaptive Filtering and Wavelet Detection Filtering-LMS Adaptive Filter, Adaptive Noise Cancelling in ECG, Improved Adaptive Filtering in FECG, EEG and Other Applications in Bio Signals, Wavelet Detection in ECG-Structural Features, Matched Filtering, Adaptive Wavelet Detection, Detection of Overlapping Wavelets. Biosignal Classification and Recognition	[9]					
Filtering-LMS Adaptive Filter, Adaptive Noise Cancelling in ECG, Improved Adaptive Filtering in FECG, EEG and Other Applications in Bio Signals, Wavelet Detection in ECG-Structural Features, Matched Filtering, Adaptive Wavelet Detection, Detection of Overlapping Wavelets. Biosignal Classification and Recognition	Time Series Analysis- Linear Prediction Models, Process Order Estimation, Non-Stationary Process, Fixed Segmentation, Adaptive Segmentation, Application in EEG, PCG and HRV Signals, Model Based ECG Simulator, Spectral Estimation-Blackman Tukey Method, Periodogram and Model Based Estimation, Application in Heart Rate Variability, PCG Signals.					
	Filtering-LMS Adaptive Filter, Adaptive Noise Cancelling in ECG, Improved Adaptive Filtering in FECG, EEG and Other Applications in Bio Signals, Wavelet Detection in ECG-Structural Features, Matched Filtering, Adaptive Wavelet Detection, Detection of Overlapping Wavelets.					
Biosignal Classification and Recognition Signal Classification and Recognition- Statistical Signal Classification, Linear Discriminant Function, Direct Feature Selection and Ordering, Back Propagation Neural Network Based Classification, Application in Normal Versus Ectopic ECG Beats and Other Biomedical Applications						
Time Frequency and Multivariate Analysis Time Frequency Representation, Spectrogram, Time-Scale Representation, Scalogram, Wavelet Analysis- Data Reduction Techniques, ECG Data Compression, ECG Characterization, Feature Extraction- Wavelet Packets, Multivariate Component Analysis – PCA, ICA.						
Total Hours 45						
Reference(s):						
Arnon Cohen, "Bio-medical Signal Processing Vol I and Vol II", CRC Press Inc., Boca Rato, Florida 2019.						
2. Emmanuvel C. Ifeachor, Barrie W.Jervis, "Digital Signal Processing-A Practical approach", 2 nd edition, Pearson education Ltd., 2002						
3. P.Ramesh Babu, "Digital Signal Processing", 6th Edition, Scitech publications, Chennai, 2014.						
4. Raguveer M.Rao and AjithS.Bopardikar, "Wavelets Transform-Introduction to theory a Applications", Pearson Education, India 2000.	nd its					
5. Rangaraj, M.Rangayyan, "Biomedical Signal Analysis-A case study approach", Wiley, 2 nd (IEEE Press, 2015.	edition					

Course C	Course Contents and Lecture Schedule					
S. No.	Topics	No. of hours				
1.0	Signal, System and Spectrum					
1.1	Characteristics of Some Dynamic Biomedical Signals	1				
1.2	Noises-Random, Structured and Physiological Noises	1				
1.3	FIR Filters	1				
1.4	IIR Filters	1				
1.5	Power Spectral Density function	1				
1.6	Cross Spectral Density Function	1				
1.7	Coherence Function	1				
1.8	Cepstrum and Homomorphic Filtering	1				
1.9	Estimation of Mean of Finite Time Signals	1				
2.0	Time Series Analysis and Spectral Estimation					
2.1	Time Series Analysis, Linear Prediction Models	1				
2.2	Process Order Estimation	1				
2.3	Non Stationary Process	1				
2.4	Fixed Segmentation and Adaptive Segmentation	1				
2.5	Application in EEG, PCG and HRV Signals	1				
2.6	Model Based ECG Simulator	1				
2.7	Spectral Estimation, Blackman Tuckey Method	1				
2.8	Periodogram and Model Based Estimation	1				
2.9	Application in Heart Rate Variability, PCG Signals	1				
3.0	Adaptive Filtering and Wavelet Detection	'				
3.1	Filtering, LMS Adaptive Filter	1				
3.2	Adaptive Noise Cancelling in ECG	1				
3.3	Improved Adaptive Filtering in FECG	1				
3.4	EEG and other Applications in Bio Signals	1				
3.5	Wavelet Detection in ECG	1				
3.6	Structural Features	1				
3.7	Matched Filtering	1				
3.8	Adaptive Wavelet Detection	1				
3.9	Detection of Overlapping Wavelets	1				
4.0	Biosignal Classification and Recognition	'				
4.1	Signal Classification and Recognition	1				
4.2	Statistical Signal Classification	1				
4.3	Linear Discriminant Function	1				
4.4	Direct Feature Selection and Ordering	2				
4.5	Back Propagation Neural Network Based Classification	2				
4.6	Application in Normal Versus Ectopic ECG Beats	1				
4.7	Other Medical Applications	1				
5.0	Time Frequency and Multivariate Analysis	l .				
5.1	Time Frequency Representation, Spectrogram	1				

5.2	Time Scale Representation,	1
5.3	Scalogram	1
5.4	Wavelet Analysis, Data Reduction Techniques	1
5.5	ECG Data Compression	1
5.6	ECG Data Characterization	1
5.7	Feature Extraction	1
5.8	Wavelet Packets	1
5.9	Multivariate Component Analysis-PCA, ICA	1

Mr.P.Balamurugan —pbalamurugan@ksrct.ac.in

70 PVL E31	VLSI for Wireless	Category	L	Т	Р	Credit
70 PVL E31	Communication	PE	3	0	0	3

- To understand the design concepts of low noise amplifiers.
- To learn the various types of mixers designed for wireless communication.
- To learn and design PLL and VCO.
- To know the concepts of data converters in communication
- To learn the concepts of CDMA in wireless communication

Pre-requisites

Fundamentals of VLSI and Wireless Communication

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the concept of MOSFET and BJT Amplifier design.	Analyse
CO2	Describe the concept of Mixer	Apply
CO3	Describe the concept of frequency Synthesizers	Apply
CO4	Know the basic concept of data converters in communications.	Analyse
CO5	Describe the VLSI Implementation concept for wireless System.	Understand

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	3	3	-	3			
CO2	3	3	3	3	-	3			
CO3	3	3	3	3	-	3			
CO4	3	2	3	3	3	3			
CO5	3	2	3	3	3	3			
3 - Strong; 2 - Medium; 1 - Some									

Assessment Pattern

Bloom's	Continuou	End Sem	
Category	1	2	Examination (Marks)
Remember	20	20	20
Understand	10	10	20
Apply	20	20	50
Analyse	10	10	10
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

C.P.R.

R.S.Rangasamy College of Technology - Autonomous R2025 M.E.VLSI Design	Syllabu									
Semester		K.S.	Rangasam				omous R20	025		
Hours/Week										
Semester										
II 3 0 0 45 3 40 60 100	Samost	\r I	Hours/Weel		Total		redit Maximum Marks			
Components and Devices Integrated Inductors- Resistors- MOSFET and BJT Amplifier Design: Low Noise Amplifier Design — Wideband LNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and Real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixer	Semest	L	Т			1		I I		
Integrated Inductors- Resistors- MOSFET and BJT Amplifier Design: Low Noise Amplifier Design — Wideband LNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and Real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixers		3	0	0	45	3	40	60	100	
Design — Wideband LNA - Design Narrowband LNA - Impedance Matching-Matching of Imaginary and Real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixers Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion — Low Frequency Case: Analysis of Gilbert Mixer — Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer — Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Phase Detectors - Phase D	Components and Devices									
Imaginary and Real Part-Interpretation of Power Matching - Automatic Gain Control Amplifiers — Power Amplifiers. Mixers Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion – Low Frequency Case: Analysis of Gilbert Mixer – Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer - Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Distortion Single Ended Sampling Mixer Single Ended Sampling Mixer - Distortion Single Ended Sampling Mixer - Distortion Single Ended Sampling	Integrate	ed Inductors- R	Resistors- M	OSFET and	d BJT Ampli	fier Design:	Low Noise	Amplifier		
Amplifiers — Power Amplifiers.	Design	– Wideband L	NA - Desigr	n Narrowba	nd LNA - Im	npedance M	/latching-Ma	atching of	[9]	
Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion — Low Frequency Case: Analysis of Gilbert Mixer — Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer - Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Distortion in Single Ended Samplin				etation of F	Power Matc	hing - Auto	omatic Gair	n Control		
Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion – Low Frequency Case: Analysis of Gilbert Mixer — Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer - Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers Phase Locked Loops - Voltage Controlled Oscillators - Phase Detector — Analog Phase Detectors — Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1 Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2 Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3 BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.		s — Power Ar	nplifiers.							
Distortion – Low Frequency Case: Analysis of Gilbert Mixer – Distortion - High-Frequency Case — Noise — A Complete Active Mixer. Switching Mixer – Distortion in Unbalanced Switching Mixer – Conversion Gain in Unbalanced Switching Mixer – Noise in Unbalanced Switching Mixer – Noise in Unbalanced Switching Mixer – Sampling Mixer – Conversion Gain in Single Ended Sampling Mixer – Distortion in Single Ended Sampling Mixer – Intrinsic Noise in Single Ended Sampling Mixer – Extrinsic Noise in Single Ended Sampling Mixer – Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers Phase Locked Loops – Voltage Controlled Oscillators – Phase Detector – Analog Phase Detectors — Digital Phase Detectors – Frequency Dividers – LC Oscillators – Ring Oscillators - Phase Noise – A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications – Adaptive Filters – Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System – Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1 Lee, Thomas H. Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2 Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3 BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.	I .						_			
Case — Noise — A Complete Active Mixer. Switching Mixer - Distortion in Unbalanced Switching Mixer — Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers Phase Locked Loops - Voltage Controlled Oscillators - Phase Detector — Analog Phase Detectors — Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours Fext book(s): B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. Bosco H. Leung, "VLSI for Wireless Communication" , 2 nd Edition, Springer US, 2014. Reference(s): Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits" , 2 nd Edition, Cambridge University Press, 2013. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.										
Switching Mixer – Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Ended Sampling Ended Sampling Ended Sampling Ended Sampling Ended Sampling Mixer Single Ended Sampling E										
Switching Mixer - A Practical Unbalanced Switching Mixer - Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Spaters - Extrinsic Noise in Single Ended Phase Detector - Extrinsic Noise in Sin	Case—	Noise — A Co	mplete Act	ive Mixer S	Switching M	lixer - Disto	ortion in Unb	palanced	503	
Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers Phase Locked Loops - Voltage Controlled Oscillators - Phase Detector - Analog Phase Detectors - Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.	Switchin	g Mixer – Con	ersion Gair	ın Unbalar	nced Switch	ing Mixer-	Noise in Un	balanced	[9]	
Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer. Frequency Synthesizers Phase Locked Loops - Voltage Controlled Oscillators - Phase Detector — Analog Phase Detectors — Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.										
Sampling Mixer. Frequency Synthesizers Phase Locked Loops - Voltage Controlled Oscillators - Phase Detector - Analog Phase Detectors - Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H. Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.										
Frequency Synthesizers Phase Locked Loops - Voltage Controlled Oscillators - Phase Detector — Analog Phase Detectors — Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.			gie Ended	Sampling	wixer - ⊏x	trinsic ivois	se in Singi	e Ended		
Phase Locked Loops - Voltage Controlled Oscillators - Phase Detector — Analog Phase Detectors — Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H. Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.										
Detectors — Digital Phase Detectors - Frequency Dividers - LC Oscillators - Ring Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd.,2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.				ontrolled Or	scillatore E	Phasa Data	ctor Apole	na Phasa		
Oscillators - Phase Noise - A Complete Synthesizer Design Example (DECT Application). Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next [9] Generation CDMA System Total Hours 45 Text book(s): 1 B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd., 2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.									[9]	
Sub Systems Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): B.Razavi, "RF Microelectronics", 2 nd Edition Prentice Hall of India Private Ltd.,2013. Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.										
Data Converters in Communications - Adaptive Filters - Equalizers and Transceivers Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd.,2013. Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): Lee, Thomas H. Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.			00 71 00111	oroto Cyritin	30.20. 200.	, <u>_</u> ,	(52017,66			
Implementations VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next [9] Generation CDMA System Total Hours 45 Text book(s):			nmunication	s - Adaptive	Filters - Eq	ualizers and	d Transceive	ers	[9]	
VLSI Architecture for Multitier Wireless System - Hardware Design Issues for a Next Generation CDMA System Total Hours 45 Text book(s): B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd.,2013. Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.				•						
Generation CDMA System Total Hours 45 Text book(s): B.Razavi , "RF Microelectronics" , 2 nd Edition Prentice Hall of India Private Ltd.,2013. Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.			Multitier Wi	reless Syst	em - Hardv	ware Desig	n Issues fo	r a Next	[9]	
Text book(s): 1 B.Razavi, "RF Microelectronics", 2 nd Edition Prentice Hall of India Private Ltd.,2013. 2 Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.	Generat	on CDMA Sys	tem			· ·				
 B.Razavi , "RF Microelectronics" , 2nd Edition Prentice Hall of India Private Ltd.,2013. Bosco H. Leung, "VLSI for Wireless Communication", 2nd Edition, Springer US, 2014. Reference(s): Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2nd Edition, Cambridge University Press, 2013. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012. 							T	otal Hours	45	
B.Razavi, "RF Microelectronics", 2 Edition Prentice Hall of India Private Ltd., 2013. Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014. Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.		ok(s):								
Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.	В.	Razavi , "RF M	icroelectron	ics" , 2 nd Ed	dition Prenti	ce Hall of In	dia Private L	_td.,2013.		
Reference(s): 1. Lee, Thomas H.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", 2 nd Edition, Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.	Bosco H. Leung, "VLSI for Wireless Communication", 2 nd Edition, Springer US, 2014.									
Cambridge University Press, 2013. 2. Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.	Referen	ce(s):				,	, , ,	,		
 Emad N Farag, Mohamed I. Elmasry "Mixed Signal VLSI Wireless Design: Circuits and Systems", Springer US, 2013. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012. 										
 Systems", Springer US, 2013. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012. 	Cambridge University Press, 2013.									
3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2012.					" Mixed Sig	nal VLSI V	Vireless De	sign: Circuit	s and	
					S Integrated	Circuits". Ta	ata McGraw	Hill, 2012.		

Course C	ontents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Components and Devices	_
1.1	Integrated Inductors- Resistors	1
1.2	MOSFET and BJT Amplifier Design	1
1.3	Low Noise Amplifier Design	1
1.4	Wideband LNA - Design Narrowband LNA	1
1.5	Impedance Matching-Matching of Imaginary	1
1.6	Real Part-Interpretation of Power Matching	1
1.7	Automatic Gain Control Amplifiers	1
1.8	Power Amplifiers	1
2.0	Mixers	•
2.1	Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain — Distortion	1
2.2	Low Frequency Case: Analysis of Gilbert Mixer	1
2.3	Distortion - High-Frequency Case - Noise - A Complete Active Mixer	1
2.4	Switching Mixer - Distortion in Unbalanced Switching Mixer -	1
2.5	Conversion Gain in Unbalanced Switching Mixer	1
2.6	Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer	1
2.7	Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer	1
2.8	Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer	1
2.9	Extrinsic Noise in Single Ended Sampling Mixer.	1
3.0	Frequency Synthesizers	
3.1	Phase Locked Loops - Voltage Controlled Oscillators	1
3.2	Phase Detector – Analog Phase Detectors	2
3.3	Digital Phase Detectors - Frequency Dividers	2
3.4	LC Oscillators - Ring Oscillators	1
3.5	Phase Noise	2
3.6	A Complete Synthesizer Design Example (DECT Application).	1
4.0	Sub Systems	•
4.1	Introduction to Subsystems	1
4.2	Data Converters	1
4.3	Data Converters in Communications (Analog)	1
4.4	Data Converters in Communications (Digital)	2
4.5	Adaptive Filters	2
4.6	Equalizers	1
4.7	Transceivers	1
5.0	Implementations	•
5.1	Introduction	2
5.2	VLSI Architecture for Multitier Wireless System	3
5.3	Introduction to CDMA	2
5.4	Hardware Design Issues for a Next generation CDMA System	2

Mr.R.Satheeshkumar - satheeshkumar@ksrct.ac.in

CPR

70 PVL E32	System on Chip	Category	L	Т	Р	Credit
	System on Chip	PE	3	0	0	3

- To design combinational and sequential logic networks.
- To learn optimization of power in combinational and sequential logic machines.
- To study the design principles of FPGA and PLA.
- To learn various floor planning methods for system design.
- To understand and apply floor-planning techniques, including block placement, routing, power and clock distribution, and off-chip connections for optimized VLSI design.

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design combinational and sequential logic networks.	Apply
CO2	Learn optimization of power in combinational and sequential logic machines	Analyse
CO3	Outline the design principles of FPGA and PLA.	Understand
CO4	Learn various floor planning methods for system design.	Understand
CO5	Understand and apply floor-planning techniques, including block placement, routing, power and clock distribution, and off-chip connections for optimized VLSI design.	Apply

Mapping with Programme Outcomes

COs	POs								
	1	2	3	4	5	6			
CO1	3	3	3	2	2	2			
CO2	3	2	3	2	2	2			
CO3	2	2	3	2	2	2			
CO4	2	2	3	2	2	2			
CO5	3	3	3	2	3	3			
3 - Strong; 2 - Medium; 1 - Some									

Assessment Pattern

Bloom's	Continuous Assess	End Sem		
Category	1	2	Examination (Marks)	
Remember	12	20	20	
Understand	28	40	50	
Apply	10	-	20	
Analyse	10	-	10	
Evaluate	-	-	-	
Create	-	-	-	
Total	60	60	100	

C.P.L

Syllabus								
Оупаваз	K.S.R	Rangasa	mv Collea	e of Techno	ology – Aut	onomous	R2025	
			N	I.E-VLSI D	esign			
			70 PVL	E32- Syste	em on Chip			
2 1	Hours/Week Total Credit Maximum Mar							ks
Semester	L	T	Р	Hours	С	CA	ES	Total
	3	0	0	45	3	40	60	100
Logic Gates Introduction Logic Altern Interconnect.	ative 0 Delay T	Gate Cir Through I	rcuits. Lov nductive Ir	w-Power G	ates. Dela	ay Through		[9]
Combination Introduction. S Logic and inte Combinationa	Standard rconnections I Logic	d Cell-Ba ct Desigr Testing.	ased Layou					[9]
Sequential M Introduction. I Sequential S Testing.	_atches	and Flip						[9]
Subsystem D Introduction. Multipliers. Hi Logic Arrays.	Subsys							[9]
Floor-Planni Introduction, Global Routi planning Tip Architecture	Floor-p ng, swite s, Desig	chbox R gn Valida	outing, Pov	ver Distribu	tion, Clock [Distributions ackages, Th	s, Floor- ne I/O	[9]
T (5 1/)						To	otal Hours	45
Text Book(s)								
1. Neil H. E. V Perspective			arris, "CMC	S VLSI De	sign: A Circ	uits and Sys	stems	
	•	•	•		sign Perspe			
3. Neil H. E. V	Weste, '	"Principl	es of CMO	S VLSI Des	sign", Kamra	an Eshraghi	an	
References(s):							
2008	f, "Mode	ern VLSI		•	n – Chip De		tice Hall, 3 rd	Edition,

Wayne Wolf, "Modern VLSI Design – IP based Design", Prentice Hall, 4th Edition, 2008.

C.P.L

Course (Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1	Logic Gates	
1.1	Introduction to Logic Gates	1
1.2	Combinational Logic Functions	2
1.3	Static Complementary Gates & Switch Logic	2
1.4	Alternative Gate Circuits & Low-Power Gates	2
1.5	Delay Through Resistive & Inductive Interconnect	2
2	Combinational Logic Networks	l
2.1	Introduction & Standard Cell-Based Layout	2
2.2	Simulation & Combinational Network Delay	2
2.3	Logic and Interconnect Design	2
2.4	Power Optimization & Switch Logic Networks	2
2.5	Combinational Logic Testing	1
3	Sequential Machines	l
3.1	Introduction to Sequential Machines	1
3.2	Latches and Flip-Flops	1
3.3	Sequential Systems and Clocking Disciplines	2
3.4	Sequential System Design	2
3.5	Power Optimization	1
3.6	Design Validation	1
3.7	Sequential Testing	1
3.8	Practical Implementation & Simulation	
4	Subsystem Design	1
4.1	Introduction to Subsystem Design Principles	1
4.2	Combinational Shifters	1
4.3	Adders	1
4.4	ALUs	1
4.5	Multipliers	1
4.6	High-Density Memory	1
4.7	Field Programmable Gate Arrays (FPGAs)	1
4.8	Programmable Logic Arrays (PLAs)	2
5	Floor-Planning	
5.1	Introduction to Floor-Planning	2
5.2	Floor-Planning Methods: Block Placement & Channel Definition	2
5.3	Global Routing	1
5.4	Switchbox Routing	1
5.5	Power Distribution & Clock Distributions	1
5.6	Floor-Planning Tips & Design Validation	1

Ms.Kausalya.S- kausalya@ksrct.ac.in

C.P. R.

70 PVL E33	Design and Verification	Category	L	T	Р	Credit
	Using UVM	PE	3	0	0	3

- To provide the students, a complete understanding on UVM testing
- To become proficient at UVM verification
- To Know about the verification components used and to build it
- To describe the register layer classes and to generate it
- To learn all peripheral bus test benches and its advanced level.

Pre-requisites

System Verilog

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basic concepts of two methodologies UVM	Analyse
CO2	Build actual verification components	Apply
CO3	Generate the register layer classes	Apply
CO4	Code test benches using UVM	Apply
CO5	Understand advanced peripheral bus test benches	Apply

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	-	3	2	1	-		
CO2	3	-	3	2	2	3		
CO3	3	-	3	2	2	-		
CO4	3	-	3	2	2	3		
CO5	3	ı	3	2	2	3		
3 - St	3 - Strong; 2 - Medium; 1 - Some							

Assessment Pattern

Bloom's	Continuous Asse	End Sem	
Category	1	2	Examination (Marks)
Remember	10	20	30
Understand	30	20	10
Apply	20	20	30
Analyse	ı	-	30
Evaluate	•	-	-
Create	-	-	-
Total	60	60	100

Syllabus								
	K.S.	Rangasam				omous R2	025	
		70 D\// F		-VLSI Desi		113784		
		70 PVL E Hours/Weel		and Verifi	ication Usiı Credit		aximum Mar	lra.
Semester	1	Hours/weel	P	Hours	Credit	CA	ES ES	ks Total
II	3	0	0	45	3	40	60	100ai
Introduction		0		40		1 70	1 00	100
Overview- The Typical UVM Testbench Architecture- The UVM Class Library-Transaction-Level Modelling (TLM) -Overview- TLM, TLM-1, and TLM-2.0 -TLM-1 Implementation- TLM-2.0 Implementation.								[9]
Modelling D — Creating t Instantiating	Developing Reusable Verification Components* Modelling Data Items for Generation - Transaction-Level Components - Creating the Driver - Creating the Sequencer - Connecting the Driver and Sequencer - Creating the Monitor - Instantiating Components - Creating the Agent - Creating the Environment - Enabling Scenario Creation - Managing of Test-Implementing Checks and Coverage						[9]	
UVM using Verification Components Creating a Top-Level Environment- Instantiating Verification Components - Creating Test Classes - Verification Component Configuration - Creating and Selecting a User-Defined Test — Creating Meaningful Tests- Virtual Sequences- Checking for DUT Correctness- Scoreboards- Implementing a Coverage Model					[9]			
UVM using the Register Layer Classes** Using the Register Layer Classes - Back-Door Access -Special Registers -Integrating a Register Model in a Verification Environment- Integrating a Register Model- Randomizing Field Values- Pre-Defined Sequences						[9]		
Assignment	Assignment in Test benches Assignment APR: Protocol Test bench Architecture Priver and Sequencer Monitor Agent						[9]	
	Total Hours 45							45
Text book(,							
1 https://	/www.accel	lera.org/ima	ges/downlo	oads/standa	ards/uvm/uv	m_users_g	uide_1.1.pdf	
		y.com/cour	se/learn-ov	m-uvm/				
Reference((s):							
		ench.in/ut_0	_					
2. http:/	//www.testb	ench_in/ot_(00_index.ht	ml				

^{*}SDG 4 – Quality Education
**SDG 9 – Industry, Innovation, and Infrastructure

Course Contents and Lecture Schedule					
S. No.	Topics	No. of hours			
1	Introduction to UVM				
1.1	Overview	1			
1.2	Typical UVM Testbench Architecture	1			
1.3	UVM Class Library	1			
1.4	Transaction-Level Modeling - Overview	1			
1.5	TLM, TLM-1	2			
1.6	TLM-2.0	1			
1.7	TLM-1 Implementation	1			
1.8	TLM-2.0 Implementation	1			
2	Developing Reusable Verification Components				
2.1	Modeling Data Items for Generation	1			
2.2	Transaction-Level Components	1			
2.3	Creating the Driver	1			
2.4	Creating the Sequencer	1			
2.5	Connecting the Driver and Sequencer, Creating the Monitor	1			
2.6	Instantiating Components, Creating the Agent	1			
2.7	Creating the Environment	1			
2.8	Enabling Scenario Creation	1			
2.9	Managing of Test-Implementing Checks and Coverage				
3	UVM Using Verification Components				
3.1	Creating a Top-Level Environment	1			
3.2	Instantiating Verification Components	1			
3.3	Creating Test Classes	1			
3.4	Verification Component Configuration	1			
3.5	Creating and Selecting a User-Defined Test	1			
3.6	Creating Meaningful Tests- Virtual Sequences	1			
3.7	Checking for DUT Correctness	1			
3.8	Scoreboards Madel	1 1			
3.9 4	Implementing a Coverage Model UVM using the Register Layer Classes	ı			
4.1	Using the Register Layer Classes Using the Register Layer Classes	1			
4.1	Back-Door Access	1			
4.3	Special Registers	1			
4.4	Integrating a Register Model in a Verification Environment	2			
4.5	Integrating a Register Model	2			
4.6	Randomizing Field Values	1			
4.7	Pre-Defined Sequences	1			
5	Assignment in Test benches				
5.1	Assignment	1			
5.2	APB: Protocol	1			
5.3	Test bench Architecture	1			
5.4	Driver and Sequencer	1			
5.5	Monitor, Agent and Env	1			
5.6	Creating Sequences	1			
5.7	Building Test Design and Testing of Ten Medule	1 2			
5.8	Design and Testing of Top Module	2			

Course Designer(s)
Poovarasan R- poovarasan@ksrct.ac.in

70 PVL E34	FPGA Based Implementation of	Category	L	Т	Р	Credit
	Signal Processing Systems	PE	3	0	0	3

- To learn the basics of FPGAs and DSP systems.
- To learn the different types of FPGA technologies.
- To understand the architectures and tools for FPGA based DSP systems.
- To know the concepts of IP cores and implementation for FPGA DSP systems.
- To learn low power FPGA Implementation

Pre-requisites

• Digital Logic Design and Digital Signal Processing

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the fundamental of FPGAs and computer arithmetic unit of DSP systems	Understand
CO2	Analyze various FPGA technologies and implementation for DSP systems	Apply
CO3	Know the design requirements, concept and tools for FPGA based DSP architectures	Apply
CO4	Learn the concept of IP cores for FPGA complex DSP systems	Understand
CO5	Explain the power reduction techniques and architecture for low power FPGA implementation and application of FFT in VLSI	Understand

Mapping with Programme Outcomes

COs		POs							
	1	2	3	4	5	6			
CO1	3	3	3	3	-	3			
CO2	3	3	3	3	-	3			
CO3	3	3	3	3	3	3			
CO4	3	3	3	3	3	3			
CO5	3	3	3	3	-	3			
3 - St	3 - Strong; 2 - Medium; 1 - Some								

Assessment Pattern

Bloom's	Continuous Assess	End Sem	
Category	1	2	Examination (Marks)
Remember	20	10	30
Understand	10	30	30
Apply	30	20	40
Analyse	-	-	-
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

CP2

Sylla	bus								
		K.S.	Rangasam		of Technolo		omous R2	025	
					-VLSI Desi			_	
					ementation				_
Seme	ester		Hours/Weel		Total	Credit		aximum Mar	
		L	I	P	Hours	С	CA	ES	Total
1 .	<u> </u>	3	0	0	45	3	40	60	100
Introd of Prod DSP System Float	Fundamentals of FPGAs and DSP Introduction to Field-Programmable Gate Arrays, a Short History of the Microchip, Influence of Programmability, Challenges of FPGAs, DSP System Basics, DSP System Definitions, DSP Transforms, Filter Structures, Adaptive Filtering, Basics of Adaptive Filtering, Number Systems, Fixed-Point and Floating-Point, Arithmetic Operations, Fixed-Point Versus Floating-Point.								[9]
Xilinx Mem Redu	FPG ory Av Iced C	A Technolo ailability F oefficient M	ixed Coeffic Iultiplier	a FPGA Te cient Desig	echnologies, n Techniqu	es, Distribu			[9]
Architectures and Tools for FPGA Based DSP Systems The Evolution of FPGA System Design, Design Methodology Requirements for FPGA DSP System Specification, IP Core Generation Tools for EPGA System-level Design							[9]		
Motiv Parai base Syste	vation f meteriz d IP Co em-levo	zable (Soft) ores, Dataf el Design a	or Reuse, In IP Cores, I Iow Modelin nd Explorat	P Core Inte g and Rapi ion of Dedic	Property (IP) egration, IP d Implemen cated Hardw	Core Exam tation for FI	ple, Curren	t FPGA-	[9]
Sourd Scalid Oper	Low Power FPGA Implementation** Sources of Power Consumption, Power Consumption Reduction Techniques, Voltage Scaling in FPGAs, Reduction in Switched Capacitance, Data Reordering, Fixed Coefficient Operation, Pipelining, Locality, Application to an FFT Implementation, Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic.								
<u> </u>							Т	otal Hours	45
2	of Signal Processing Systems",2 nd Edition, John Wiley and Sons, 2017.								
1.	Sprin	ger, 2016.						ate Arrays",	
2.	2. Neil H.E.Weste, Kamran Eshraghian, "Principles of CMOS VLSI Design", 2 nd Edition, Pearson, 2018.								
3.	John and A	G.Proakis, Applications	Dimitris M s", 4 th Editio	anolakis, "[n, Pearson	Digital Signa Education,	al Processi 2014	ng: Princip	les, Algorith	ms
4.	Sanji Hill, 2	t K.Mitra, " <mark></mark>	Digital Signa	l Processin	g: A Compu	ter based a	oproach", 4	th Edition, M	lcGraw-

^{*} SDG 9 – Industry, Innovation, and Infrastructure **SDG 7 – Affordable and Clean Energy

Course C	Course Contents and Lecture Schedule						
S. No.	Topics	No. of hours					
1.0	Fundamentals of FPGAs and DSP	1					
1.1	Introduction to Field-programmable Gate Arrays	1					
1.2	A Short History of the Microchip, Influence of Programmability,	1					
1.3	Challenges of FPGAs	1					
1.4	DSP System Basics, DSP System Definitions	1					
1.5	DSP Transforms,	1					
1.6	Filter Structures,	1					
1.7	Adaptive Filtering, Basics of Adaptive Filtering	1					
1.8	Number Systems, Fixed-point and Floating-point	1					
1.9	Arithmetic Operations, Fixed-point versus Floating-point	1					
2.0	FPGA Technologies and Implementation Issues						
2.1	Xilinx FPGA Technologies	2					
2.2	Altera FPGA Technologies	2					
2.3	Various Forms of the LUT	2					
2.4	Memory Availability Fixed Coefficient Design Techniques	1					
2.5	Distributed Arithmetic	1					
2.6	Reduced Coefficient Multiplier	1					
3.0	Architectures and Tools for FPGA Based DSP Systems	·					
3.1	The Evolution of FPGA System Design	1					
3.2	Design Methodology Requirements for FPGA DSP	1					
3.3	System Specification, IP Core Generation Tools for FPGA	1					
3.4	System-level Design Tools for FPGA	1					
3.5	DSP Algorithm Characteristics	1					
3.6	DSP Algorithm Representations	1					
3.7	Basics of Mapping DSP Systems onto FPGAs	1					
3.8	Parallel Operation	1					
3.9	Hardware Sharing, Application to FPGA	1					
4.0	Complex DSP systems	<u> </u>					
4.1	Motivation for Design for Reuse	1					
4.2	Intellectual Property (IP) Cores	1					
4.3	Evolution of IP Cores, Para meterizable (Soft) IP Cores	1					
4.4	Para meterizable (Soft) IP Cores	1					
4.5	IP Core Integration, IP Core Example	1					
4.6	Current FPGA-based IP Cores	1					
4.7	Data flow Modeling and Rapid Implementation for FPGA DSP Systems	1					
4.8	System-level Design	1					
4.9	Exploration of Dedicated Hardware	1					
5.0	Low Power FPGA Implementation						
5.1	Sources of Power Consumption	1					
5.2	Power Consumption Reduction Techniques	1					
5.3	Voltage Scaling in FPGAs	1					
5.4	Reduction in Switched Capacitance	1					
5.5	Data Reordering	1					
5.6	Fixed Coefficient Operation	1					
	1 man a same e persone :						

5.7	Pipelining, Locality	1
5.8	Application to an FFT Implementation, Reconfigurable Systems	1
5.9	Reconfigurable Systems, Memory Architectures, Support for Floating- point Arithmetic.	1

Mr.P.Balamurugan — <u>pbalamurugan@ksrct.ac.in</u>

70 PVL E35	Wireless Sensor Networks	Category	L	Т	Р	Credit	
	Wileless Selisol Networks	PE	3	0	0	3	

- To understand the fundamental concepts and architecture of Wireless Sensor Networks (WSN)
- To acquire knowledge of various routing protocols used in WSN
- To explore the principles and applications of 6LoWPAN technology
- To gain insight into operating systems designed for WSN environments
- To enhance understanding of operating systems specific to 6LoWPAN-based networks.

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Examine the architecture and design principles of Wireless Sensor Networks (WSNs)	Understand
CO2	Identify the functionalities and characteristics of various routing protocols used in WSNs	Understand
CO3	Outline the 6LoWPAN architecture and explain header compression techniques	Understand
CO4	Implement suitable protocols for various types of sensor networks based on their functionality and requirements.	Apply
CO5	Develop functional modules and apply operating systems commonly used in wireless sensor networks	Apply

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	3	-	-	3			
CO2	3	3	3	-	-	3			
CO3	3	3	3	-	-	3			
CO4	3	3	3	-	-	3			
CO5	3	3	3	-	3	3			
3 - Strong; 2 - Medium; 1 - Some									

Bloom's Category	Continuous Assess	End Sem Examination (Marks)		
	1	2		
Remember	20	-	20	
Understand	40	40	30	
Apply	-	20	50	
Analyse	-	-	-	
Evaluate	-	-	-	
Create	-	-	-	
Total	60	60	100	

CP2

Syllab	ous							
	K.S.Rangasamy College of Technology – Autonomous R2025							
	M.E-VLSI Design							
				Wireless S				
Seme	stor	Hours/Weel		Total	Credit	Ma	ximum Marks	3
Jenne	L	T	Р	Hours	С	CA	ES	Total
II		0	0	45	3	40	60	100
1	ess Sensor Ne							
	enges - Compar							[9]
	gn Principles - 9					IEEE 802.	15.4 - Zigbee	[9]
	luetooth- Energ	y Harvesting	Techniques	s for WSN r	odes.			
	ng Protocols*							
	amentals - Low							[9]
	ssification - SP				- PEGASIS	5- EAR (En	ergy-Aware	[0]
	ng) – EADR (E	nergy-Aware	Distance R	outing)				
1	VPAN*							
	/PAN Architectι							
	er - Route - Ove							[9]
	ed Header Com			bile IPv6, Pı	oxy Home .	Agent - Pro	xy MIPv6 -	
	rity Consideration	ons in 6LoWF	PAN					
	ication*							
	ın Issues - Rea							
	digms - Commo							[9]
	or Networks (M	1QTT-S) - Zi	gBee Com	pact Applic	ation Proto	col (CAP)-	WSNs in	
	hcare							
	or Network Pla					· : T: 00	in n Na a O	ro1
	S - NesC - Inte						using NesC.	[9]
1088	SIM - Simulation	Environmen	t - Cooja Sii	mulator, Pro	gramming.		T-4-111	45
T. 41	1-/->-						Total Hours	45
	oook(s):		" "					
	Holger Karl, An		"Protocol a	nd Architect	ure for Wire	eless Senso	r Networks", J	ohn
	Wiley & Sons 2		107: 1	<u> </u>	1 " ' ' ' ' '	0047		
	Anna Forster, "	introduction t	o Wireless S	sensor Netv	vorks", VVile	y, 2017.		
Reter	ence(s):							
1.	Hongmei Deng			Agrawal, "Ro	outing secur	ity in Wirele	ess Ad hoc Net	works",
L''-	IEEE Commun	ication Maga	zine, 2002.					
2. Zach Shelby Sensinode and Carsten Bormann, "6LoWPAN: The Wireless Embedded Inter							iternet"	
	John Wiley and Sons, 2009.							
3.	Philip Levis, "Ti	nyOS Progra	ımming", 20	06 –www.tii	nyos.net.			
\vdash	The Constitution		na lattic : II :	! 10				
4.	The Contiki Op	erating Syste	m.nttp://ww	w.sics.se/C	ontiki.			
	00040 111 5							

^{*}SDG4 Quality Education

Course C	Course Contents and Lecture Schedule						
S. No.	Topics	No. of hours					
1.0	Wireless Sensor Network Architecture						
1.1	Challenges	1					
1.2	Comparison with Ad hoc Network	1					
1.3	Node Architecture	1					
1.4	Network Architecture	1					
1.5	Design Principles	1					
1.6	Short Range Radio Communication standards	1					
1.7	Zigbee	1					
1.8	Bluetooth	1					
1.9	Energy Harvesting Techniques for WSN nodes	1					
2.0	Routing Protocols						
2.1	Fundamentals, Low Duty Cycle Protocols	1					
2.2	Wakeup Concepts	1					
2.3	Routing Protocols – Requirements	1					
2.4	SPIN	1					
2.5	Directed Diffusion	1					
2.6	LEACH	1					
2.7	PEGASIS	1					
2.8	EAR	1					
2.9	EADR	1					
3.0	6LoWPAN						
3.1	6LoWPAN Architecture, Protocol Stack	1					
3.2	Adaptation Layer	1					
3.3	Link layers, Addressing	1					
3.4	Routing - Mesh-Under- Route-Over	1					
3.5	Header Compression - Stateless Header Compression	1					
3.6	Context- Based Header Compression	1					
3.7	Fragmentation and Reassembly	1					
3.8	Mobile Ipv6, Proxy Home Agent	1					
3.9	Security Considerations in 6LoWPAN	1					
4.0	Application						
4.1	Design Issues, Real-Time Streaming	1					
4.2	Sessions Publish/Subscribe	1					
4.3	Web Service Paradigms	1					
4.4	Common Protocols	1					
4.5	Web Service Protocols	1					
4.6	MQ Telemetry Transport for Sensor Networks (MQTT-S)	2					
4.7	Zigbee Compact Application Protocol (CAP)	1					
4.8	WSNs in Healthcare	1					
5.0	Sensor Network Platforms						
5.1	Tinyos	1					
5.2	Nesc Interfaces	1					

5.3	Modules, Configuration	1
5.4	Programming in Tinyos Using Nesc	1
5.5	TOSSIM	1
5.6	Simulation Environment - Cooja Simulator	2
5.7	Simulation Environment – Programming	2

Mrs.U.Shyamala Devi - shyamaladeviu@ksrct.ac.in

70 PAC 002	Disaster Management -	Category	L	Т	Р	Credit
		AC	2	0	0	0

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches Teach how to improve writing skills and level of readability

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Summarize basics of disaster	Remember
CO2	Explain a critical understanding of key concepts in disaster risk	Understand
	reduction and humanitarian response.	
CO3	Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.	Understand
CO4	Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	Understand
CO5	Develop the strengths and weaknesses of disaster management approaches	Apply

Mapping with Programme Outcomes

COs	POs						
	1	2	3	4	5	6	
CO1	3	3	3	-	3	-	
CO2	3	3	3	-	3	-	
CO3	3	3	3	-	3	-	
CO4	3	3	3	-	3	-	
CO5	3	3	3	-	3	-	
3 - Strong; 2 - Medium; 1 - Some							

Assessment Pattern

7 to o o o o i i o i i o i i o i i i						
Bloom's	Continuous Assessment Tests (Marks)					
Category	1	2				
Remember	50	50				
Understand	50	50				
Apply	-	-				
Analyse	-	-				
Evaluate	-	-				
Create	-	-				
Total	100	100				

CP2

Sylla	abus								
	K.S.Rangasamy College of Technology – Autonomous R2025								
	Common to all Branches								
	60 PAC 002 – Disaster Management								
Sem	ester		lours/Wee		Total	Credit		ximum Mai	
		L	T	Р	Hours	С	CA	ES	Total
	II	2	0	0	30	0	100	-	100
Disa Natu	Introduction Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.								[6]
Ecor Disa Fam Indu	Repercussions of Disasters and Hazards Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.							[6]	
Stud Aval Tsur	ly of S anches nami; P	s; Areas Pro ost-Disaste	nes; Area one to Cycl or Diseases	onic and Co and Epide	oastal Haza mics	nd Drought ards with Sp			[6]
Prep of Ri	Disaster Preparedness and Management** Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.						[6]		
Disa Disa Asse	Risk Assessment Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.						[6]		
							Te	otal Hours	30
Text	book(
1		S. L, "Disas cation Pvt.			d Managem	ent Text an	d Case Stu	ıdies", Deep	& Deep
2		ha Rai, Sin Royal boo			agement in	India: Persp	ectives, iss	sues and str	ategies
Refe	Reference(s):								
1.	Sahni Pardeen et al. "Disaster Mitigation Experiences and Reflections" Prentice Hall of							ll of	
2.	Subra	amanian R,	Disaster M	lanagement	t", Vikas put	lishing Hou	ising Pvt. Lt	d., 2018.	
3.	Chu-l	nua Kuei,	Christian N	l Madu, Ha	andbook of		/lanagemer	nt Risk Red	uction &
4.		Andharia, I						Discourse, S	Springer,

^{*}SDG 11 – Sustainable Cities and Communities **SDG 13 – Climate Action

70 PVL 2P1	VLSI Laboratory II	Category	L	T	Р	Credit
		PC	0	0	4	2

- To learn the concept of System Verilog HDL
- To help engineers understand, and maintain digital hardware models and conventional verification test benches written in System Verilog.
- To provide a critical language foundation for more advanced training on System Verilog
- To develop Verilog test environments using EDA tools
- To learn the features and capabilities of the UVM class library for system Verilog

Pre-requisites

Basic Verilog HDL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Use the System Verilog, to design and synthesis features of digital circuits	Analyse
CO2	Appreciate and apply the System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays, and learn how to utilize these features for more effective and efficient verification.	Analyse
CO3	Implement higher level of abstraction to design and verification	Analyse
CO4	Develop Verilog test environments of significant capability and complexity	Analyse
CO5	Integrate scoreboards, multichannel sequencers and Register Models	Analyse

Mapping with Programme Outcomes

COs	POs						
COS	1	2	3	4	5	6	
CO1	3	-	3	3	3	3	
CO2	3	-	3	3	3	3	
CO3	3	-	3	3	3	3	
CO4	3	-	3	3	3	3	
CO5	3	-	3	3	3	3	
3 - Strong; 2 - Medium; 1 - Some							

Assessment Pattern

Bloom's Category		nts Assessment arks)	Model Examination	End Sem Examination (Marks)	
Category	Lab	Activity	(Marks)		
Remember	-	-	-	-	
Understand	-	-	20	20	
Apply	50	25	80	80	
Analyse	-	-	-	-	
Evaluate	-	-	-	-	
Create	-	-	-	-	
Total	50	25	100	100	

K.S.Rangasamy College of Technology – Autonomous R2025								
M.E-VLSI Design								
	70 PVL 2P1 – VLSI Laboratory II							
Semester	l	Hours/Weel	k	Total	Credit	Ma	ximum Ma	rks
Semester	L	Т	Р	Hrs	С	CA	ES	Total
II	0	0	4	60	2	60	40	100

List of Experiments:

- 1. Introduction to System Verilog and UVM
- 2. Modeling Combinational circuits using System Verilog
- 3. Design FIFO using system Verilog
- 4. Design on FSM using system Verilog
- 5. Use an interface between testbench and DUT
- 6. Developing a test program using system Verilog
- 7. Create a scoreboard using dynamic array
- 8. Use mailboxes for verification
- 9. Generate constrained random test values
- 10. Using coverage with constrained random tests

Course Designer(s)

Mr.S.Saravanan – saravanan.s@ksrct.ac.in

C.P.C.

70 PVI 2P2	Term Paper and Seminar	Category	L	Т	Р	Credit
70 F VL 2F2	Term Faper and Seminar	CG	0	0	2	0

- Students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles.
- A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas.
- To identify the recent topics in the research area and formulate the problem
- To analyze the mathematical model for the identified problem
- To design and simulate/ develop prototype model

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Survey the relevant bibliography such as national/international referred journals for the preferred areas of research	Analyse
CO2	Develop scientific, technical reading and writing skills for the technical report preparation to apply it in their topics of research	Apply
CO3	Apply mathematical ideas to any problem in the research field	Apply
CO4	Implement and analyze the various complex problems in different practical applications	Analyse
CO5	Cultivate presentation skills to deliver their work in front of technically qualified audience	Apply

Mapping with Programme Outcomes

COs						
COS	1	2	3	4	5	6
CO1	3	3	3	2	3	-
CO2	3	3	3	2	3	3
CO3	3	-	3	3	-	3
CO4	3	2	3	3	2	3
CO5	3	3	3	2	3	-
3 - St	rong; 2	2 - Med	lium; 1	- Som	е	

Assessment Pattern

Bloom's Category	Lab Experiments Assessment (Marks)	Model Examination (Marks)	End Sem Examination (Marks)
Remember	-	-	
Understand	-	-	
Apply	25	50	
Analyse	25	50	No End Semester
Evaluate	-	-	Examination
Create	-	-	
Total	50	100	

CPL

K.S.Rangasamy College of Technology – Autonomous R2025									
	M.E-VLSI Design								
	70 PVL 2P2 - Term Paper and Seminar								
Semester	ŀ	lours/Weel	(Total	Credit	Ma	aximum Marks		
Semester	L	Т	Р	Hrs	С	CA	ES	Total	
II	0	0	2	30	0	100	-	100	

The work involves the following steps:

- 1. Selecting a subject, narrowing the subject into a topic.
- 2. Stating an objective.
- 3. Collecting the relevant bibliography (at least 15 journal papers)
- 4. Preparing a working outline.
- 5. Studying the papers and understanding the authors contributions and critically analysing each paper.
- 6. Preparing a working outline.
- 7. Linking the papers and preparing a draft of the paper.
- 8. Preparing conclusions based on the reading of all the papers.
- 9. Writing the Final Paper and giving final Presentation

Please keep a file where the work carried out by you is maintained.

Activities to be carried out

Activity	Instructions	Submission week	Evaluation
Selection of area of interest and Topic Stating an Objective	An area of interest, topic has to be selected and objective to be framed	2 nd week	3% Based on clarity of thought, current relevance and clarity in writing
Collecting Information about chosen area & topic	The following details related to the chosen area must be collected. 1. List 1 special interest groups or professional society 2. List 2 journals 3. List 3 conferences, symposia or workshops 4. List1+ thesis title 5. List 5 web presences (mailing lists, forums, news sites) 6. List 6 authors who publish regularly in your area 7. Attach a call for papers (CFP) from conference/Journal/Sym posium in the chosen area.	3 rd week	(the selected information must be area specific and of international and national standard)
Collection of Journal papers in the topic in the context of the objective — collect 20 &	 Provide a complete list of references you will be using- Based on the objective - Search Various digital libraries and Google Scholar 	4 th week	6% (the list of standard papers and reason for selection)

CP2

(1 . 614) A//		
then filter	 When picking papers to read - try to: Pick papers that are related to each other in some way and/or that are in the same field so that a meaningful survey can be Written Favour papers from well-known journals and conferences, Favour 'first' or 'foundational' papers in the field (as indicated in other people's survey paper), Favour more recent papers, Pick a recent survey of the field to quickly gain an overview, Find relationships with respect to each other and to your topic area (classification scheme/categorization) Mark in the hard copy of papers whether complete work or section/sections of the paper are being considered 		
Reading and notes for first 5 papers	Reading Paper Process For each paper form a Table answering the following questions: What is the main topic of the article? What was/were the main issue(s) the author said they want to discuss? Why did the author claim it was important? How does the work build on other's work, in the author's opinion? What simplifying assumptions does the author claim to be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to others?	5 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)

	 What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper (from the perspective of your survey) 		
Reading and notes for next5 papers	Repeat Reading Paper Process	6 th week	8% (the table given should indicate your
Draft outline 1 and Linking papers	Prepare a draft Outline, with survey goals, along with a classification / categorization Diagram	8 th week	8% (this component will be evaluated based on the linking and classification among the papers)
Abstract	Prepare a draft abstract and give a Presentation	9 th week	6% (Clarity, purpose and conclusion) 6% Presentation & Viva Voce
Introduction Background	Write an introduction and background Sections	10 th week	5% (clarity)
Sections of the paper	Write the sections of the paper chosen based on the classification / categorization diagram in keeping with the goals of your survey	11 th week	10% (this component will be evaluated based on the linking and classification among the papers)
Your conclusions	Write conclusions and future work	12 th week	5% (conclusions– clarity and your ideas)
Final Draft	Complete the final draft of the paper prepared	13 th week	10% (formatting, English, Clarity and linking) 4% Plagiarism

			Check Report
Seminar	A brief 15 slides on the paper prepared	14 th & 15 th week	10% (based on presentation and Viva-voce)

Mr.S.Saravanan – saravanan.s@ksrct.ac.in

C. C.L

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215 (An Autonomous Institution affiliated to Anna University)

M.E. / M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted in 2025-2026)

THIRD SEMESTER

S.No	Course	Name of the	Duration of	Weightage of Marks			Minimum Marks for Pass in End Semester Exam		
3.110	Code	Course	Internal Exam	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total	
				THEORY					
1.	70 PVL 301	Electronic Packaging	2	40	60	100	45	100	
2.	70 PVL E4*	Professional Elective IV	2	40	60	100	45	100	
			THEORY	CUM PRACTIC	AL				
3.	70 PVL E5*	Professional Elective V	2	50	50	100	45	100	
	PRACTICAL								
4.	70 PVL 3P1	ProjectWork- Phase I	3	100	00	100	-	100	

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

C. R.L

^{**} End semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for theory End Semester Examination, 50 marks for theory cum practical End Semester Examination and 40 marks for practical End semester Examination.

70 PVL 301	Electronic Backgaing	Category	L	Т	Ъ	Credit
	Electronic Packaging	PC	3	0	0	3

- To understand the fundamental concepts of electronic systems packaging
- To understand the packaging optimize materials for electronic systems
- To explore the knowledge of CAD for printed circuit board
- To illustrate the concepts of Surface Mount Technology and Thermal Management
- To study about the Embedded passive Technology

Pre-requisites

Electronic Circuits and Embedded Systems

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the electronic systems packaging	Understand
CO2	Describe the packaging optimize materials	Analyse
CO3	Design CAD for printed circuit board	Understand
CO4	Describe Surface Mount Technology and Thermal Management	Understand
CO5	Illustrate the Embedded passive Technology	Understand

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	3	3	2	2	3		
CO2	3	3	3	-	2	3		
CO3	3	3	3	-	2	3		
CO4	3	3	3	2	2	3		
CO5	3	3	3	-	2	3		
3 - Strong; 2 - Medium; 1 - Some								

Assessment Pattern							
Bloom's	Continuous Assess	sment Tests (Marks)	End Sem				
Category	1	2	Examination (Marks)				
Remember	10	20	30				
Understand	20	40	10				
Apply	20	-	30				
Analyse	10	-	30				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

C. R.L

Syllabus								
	K.S.I	Rangasamy				omous R2	025	
				-VLSI Desi				
	_			- Electronic				
Semester	<u> </u>	Hours/Week		Total	Credit		ximum Mark	
	L	T	Р	Hours	С	CA	ES	Total
	3	0	0	45	3	40	60	100
Electronic S Definition of			of Semico	nductors Di	roducte and	L ovels of	Packaging	
								[9]
Packaging Aspects of Handheld Products, Definition of PWB, Basics of Semiconductor and Process Flowchart, Wafer Fabrication, Inspection and Testing, Wafer Packaging; Packaging								[0]
Evolution; Cl							, r donaging	
Semicondu			, , , , , , , , , , , , , , , , , , , ,	<u>g,</u>				
Single Chip I			SCM), Com	monly Used	d Packages	and Advar	nced	ro1
Packages; M								[9]
(MCM)-Type	s; System-i	n-Package ((SIP); Pack	aging Road	maps; Hybr	id Circuits;	Electrical	
Design Cons	iderations I	n Systems F	Packaging,	Resistive, C	Capacitive a	nd Inductiv	e Parasitic,	
Layout Guide			n Problem,	Interconne	ction.			
CAD for Pri								
Benefits Froi								
Its Highlights								[9]
Board - Leve								
Plotting and								
Preparation,								
Technologies								
Through-Hol for PWBs an			Steps, Fai	iei anu Fall	emriamig	ivietrious, c	boluer iviask	
Surface Moi			hermal Co	nsideration	16*			
SMD Benefit						Attach SMI	Os Solders:	
Wetting of S								[9]
Soldering, B								[-]
Tin Whisker,								
Soldering; L								
Compliance	and E-Was	ste Recyclin	g, Issues,	Thermal D	esign Cons	iderations	in Systems	
Packaging.								
Embedded I								
Introduction								
Embedded							Embedding	[9]
Capacitors;	Case Stud	y: Impleme	ntation of	Embedded	Passives	Technology	y in Mobile	
Devices						T .	-4-111	15
Text Book(/c\·					10	otal Hours	45
1		. "Eundoma	ntale of Mi	oroevetoma	Dackagina"	McCrow		1
 Rao R. Tummala, "Fundamentals of Microsystems Packaging", McGraw Hill, NY, 2001. R.G. Kaduskar and V.B.Baru, Electronic Product design, Wiley India, 2011 								1.
		ııu v.b.barl	ı, ⊏ıectroni	c Froduct de	zsign, vviiey	rifiula, 201	1	
Reference(R, Microelec	tronico noc	kaging bass	thook Mac	row Hill on	108	
			•				JUO.	
2.		n, "Advance				SS, 1888.		
3. R.S.Ł	Khandpur, F	Printed Circu	it Board, T	ata McGraw	/ Hill, 2005			

^{*}SDG-Industry Innovation and Infrastructure

Clah

Course (Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1	Overview of Electronic Systems Packaging	
1.1	Definition of a system and history of semiconductors	1
1.2	Products and levels of packaging	1
1.3	Packaging aspects of handheld products	1
1.4	Definition of PWB	1
1.5	Basics of Semiconductor and Process flowchart	1
1.6	Wafer fabrication, inspection and testing	1
1.7	Wafer packaging; Packaging evolution	1
1.8	Chip connection choices	1
1.9	Wire bonding, TAB and flip chip	1
2	Semiconductor Packages	
2.1	Single chip packages or modules (SCM)	1
2.2	Materials in packages; Thermal mismatch in packages	1
2.3	Commonly used packages and advanced packages	1
2.4	Multichip modules (MCM)-types	1
2.5	System-in-package (SIP)	1
2.6	Packaging roadmaps Hybrid circuits	1
2.7	Electrical Design considerations in systems packaging	1
2.8	Resistive, Capacitive and Inductive Parasitics	1
2.9	Layout guidelines and the Reflection problem, Interconnection	1
3	CAD for Printed Wiring Boards	
3.1	Benefits from CAD; Introduction to DFM, DFR & DFT	1
3.2	Components of a CAD package and its highlights, Beginning a circuit design with schematic work and component layout	1
3.3	DFM check, list and design rules	1
3.4	Design for Reliability, Printed Wiring Board Technologies: Board-level packaging aspects, Review of CAD output files for PCB fabrication	1
3.5	Photo plotting and mask generation, Process flow-chart; Vias	1
3.6	PWB substrates; Surface preparation, Photoresist and application methods	1
3.7	UV exposure and developing; Printing technologies for PWBs, PWB etching; PWB etching, Resist stripping	1
3.8	Screen printing technology, through-hole manufacture process steps; Panel and pattern plating methods, Solder mask for PWBs; Multilayer PWBs	1
3.9	Introduction to, microvias, Microvia technology and Sequ	
4	Surface Mount Technology and Thermal Considerations	
4.1	SMD benefits; Design issues; Introduction to soldering	1
4.2	Reflow and Wave Soldering methods to attach SMDs	1
4.3	Solders; Wetting of solders; Flux and its properties	1
4.4	Defects in wave soldering, Vapour phase soldering	1
4.5	BGA soldering and Desoldering/Repair; SMT failures	1
4.6	SMT failure library and Tin Whisker, Tin-lead and lead-free solders	1
4.7	Phase diagrams; Thermal profiles for reflow soldering; Lead freevAlloys	1

Cla

4.8	Lead-free solder considerations; Green electronics; RoHS	1
4.9	compliance and e-waste recycling, Issues, Thermal Design considerations in systems packaging	
5	Embedded Passives Technology	
5.1	Introduction to embedded passives	1
5.2	Need for embedded passives	1
5.3	Design Library	1
5.4	Embedded resistor processes	1
5.5	Embedded capacitors	1
5.6	Processes for embedding capacitors	2
5.7	Case study examples	2

Mrs.V.P.Kalaiyarasi - kalaiyarasivp@ksrct.ac.in

Cla

Chairman
CHAIRMAN 83 ARD OF STUDIES
Department of ECE
Department of ECE

70 PVL F41	DSP Structures for VLSI	Category	L	T	P	Credit	l
70 F V L L41	DOF Structures for VLS	PE	3	0	0	3	l

- To understand the fundamentals of DSP
- To learn various DSP structures and their implementation.
- To know designing constraints of various filters
- Design and optimize VLSI architectures for basic DSP algorithms
- To enable students to design VLSI system with high speed and low power.

Pre-requisites

Digital Signal Processing

Course C	Course Outcomes							
On the su	On the successful completion of the course, students will be able to							
CO1	CO1 Acquire knowledge about fundamentals of DSP processors.							
CO2	Improve the overall performance of DSP system through various transformation and optimization techniques.	Apply						
CO3	Understand the need of different types of instructions for DSP.	Apply						
CO4	Optimize design in terms of computation complexity and speed.	Apply						
CO5	Understand clock based issues and design asynchronous and wave pipelined systems.	Understand						

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	3	3	-	3			
CO2	3	3	3	3	-	3			
CO3	3	3	3	3	-	3			
CO4	3	3	3	3	-	3			
CO5	3	3	3	3	-	3			
3 - St	rong; 2	3 - Strong; 2 - Medium; 1 - Some							

Assessment Pattern

Bloom's Category	Continuous Assessr	End Sem Examination (Marks)	
	1	2	
Remember	10	10	10
Understand	10	20	30
Apply	40	30	60
Analyse	-	=	-
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Sylla	bus								
	K.S.Rangasamy College of Technology – Autonomous R2025								
	M.E-VLSI Design								
					DSP Struct				
Sem	ester		lours/Wee		Total	Credit		ximum Mar	
		L	T	P	Hours	C	CA	ES	Total
<u> </u>	II	3	0	0	45	3	40	60	100
Linea	ar Syst		/- Convolut	ion- Correl	ation - DF1				[9]
		IIR Filters- I G-DFG.	Filter Realiz	zations. Re _l	presentatio	ns of DSP /	Algorithms-	Block	ادا
Itera	tion Bo	ound, Pipe	lining and l	Parallel Pro	cessing of	Fir Filter			
					Sound and				
					ipelining an			Pipelining	[9]
			arallel Proc	essing, Pipe	elining and	Parallel Pro	ocessing		
	ow Pov								
		Jnfolding a							
					blems- So				FO.1
					ing and Ret				[9]
		anstormatio nitecture- F			on Technic	ques, Regi	ster Minim	ization in	
		olution	Juling of Wil	ulliale Syst	em.				
			- Modified	Cook - Too	om Algorith	m Design	of East Co	nvolution	[9]
					n- Modified \			on volution	[ی]
		Strength R					J · · · · · · · ·		
					o Parallel	and Three	e Parallel.	Parallel	
					ven, Merge				[9]
									[~]
	Filter Architecture-Parallel Rank Order Filters-Running Order, Merge Order Sorter, Low Power Rank Order Filter.								
	Total Hours 45								
Refe	rence(s):						<u>.</u>	
1.	K.K F	Parhi: "VLSI	Digital Sign	al Processi	ng", John-W	/iley, 2 nd Ed	ition, Reprir	nt, 2008.	
2.	John Editio	G.Proakis, on, 2009.	Dimitris G.I	Manolakis, '	"Digital Sigr	nal Processi	ing", Prenti	ce Hall of Ind	ia, 1 st

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Introduction to Digital Signal Processing	
1.1	Linear System Theory, Convolution and Correlation	1
1.2	DFT & FFT	2
1.3	Basic Concepts in FIR Filters and IIR Filters	2
1.4	Filter Realizations	2
1.5	Representations of DSP Algorithms- Block Diagram, SFG, DFG.	2
2.0	Iteration Bound, Pipelining and Parallel Processing of Fir Filter	
2.1	Data-Flow Graph Representations	1
2.2	Loop Bound and Iteration Bound Algorithms for Computing Iteration Bound	2
2.3	LPM Algorithm	2
2.4	Ppipelining of FIR Digital Filters Parallel Processing,	2
2.5	Pipelining and Parallel Processing for Low Power	2
3.0	Retiming, Unfolding and Folding	
3.1	Retiming: Definitions, Properties and Problem Solving Systems of Inequalities	2
3.2	Properties of Unfolding, Critical Path, Unfolding and Retiming	2
3.3	Applications of Unfolding	1
3.4	Folding Transformation Register Minimization Techniques	2
3.5	Register Minimization in Folded Architecture	1
3.6	Folding of Multirate System	1
4.0	Fast Convolution	
4.1	Cook-Toom Algorithm	2
4.2	Modified Cook-Toom Algorithm	2
4.3	Design of Fast Convolution Algorithm	2
4.4	By Inspection - Winograd Algorithm	2
4.5	Modified Winograd Algorithm	1
5.0	Arithmetic Strength Reduction in Filters	
5.1	Parallel FIR Filters	1
5.2	Fast FIR Algorithms-Two Parallel and Three Parallel	2
5.3	Parallel Architectures for Rank Order Filters -Odd-Even	2
5.4	Merge-Sort Architecture-Rank Order Filter Architecture	1
5.5	Parallel Rank Order Filters	1
5.6	Running Order Merge Order Sorter	1
5.7	Low Power Rank Order Filter	1
Course D	Designer(s)	•

Ms.C.Saraswathy - saraswathy@ksrct.ac.in

70 PVL E42	Applied Medical Image	Category	L	Т	Р	Credit
	Processing	PE	3	0	0	3

- To introduce the fundamentals of image processing techniques
- To apply the enhancement techniques and analyse the image
- To learn about medical image representation
- To analyse the quality of medical image and do classification
- To study about image registrations and visualizations

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the fundamentals of image processing	Understand
CO2	Analyze Morphology, enhancement techniques and implement these in images	Apply
CO3	Understand the representation of medical images	Apply
CO4	Analyze medical images of numerous modalities such as PET, MRI, CT, or microscopy	Apply
CO5	Study image registrations and visualization	Apply

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	-	2	-	2	-		
CO2	3	-	3	2	3	3		
CO3	3	-	3	2	3	3		
CO4	3	-	3	2	3	3		
CO5	3	-	3	2	3	-		
3 - St	3 - Strong; 2 - Medium; 1 - Some							

Assessment	Pattern

Bloom's Category	Continuous Assessr	End Sem Examination (Marks)		
	1 2		7	
Remember	10	10	30	
Understand	30	30	30	
Apply	20	20	30	
Analyse	-	-	10	
Evaluate	-	-	-	
Create	-	-	-	
Total	60	60	100	

Sylla	Syllabus								
K.S.Rangasamy College of Technology – Autonomous R2025									
					-VLSI Desi				
					ed Medical				
Sem	ester	<u> </u>	lours/Wee		Total	Credit		ximum Ma	
		L	T	Р	Hours	С	CA	ES	Total
	II	3	0	0	45	3	40	60	100
Image Fundamentals Image Perception, MTF of the Visual System, Image Fidelity Criteria, Image Model, Image Sampling and Quantization — Two-Dimensional Sampling Theory, Image Quantization, Optimum Mean Square Quantizer, Image Transforms — DFT, DCT, KLT, SVD.									[9]
Histo Avera Harm Resto Filter	Image Enhancement and Restoration Histogram Equalization and Specification Techniques, Noise Distributions, Spatial Averaging, Directional Smoothing, Median, Geometric Mean, Harmonic Mean, Contra Harmonic Mean Filters, Homomorphic Filtering, Color Image Enhancement. Image Restoration - Degradation Model, Unconstrained and Constrained Restoration, Inverse Filtering- Wiener Filtering.								
Pixel Repr Form 7.5, I	Medical Image Representation Pixels and Voxels – Algebraic Image Operations - Gray Scale and Color Representation- Depth-Color and Look Up Tables - Image File Formats- Dicom- Other Formats- Analyze 7.5, Nifti and Interfile, Image Quality and the Signal to Noise Ratio.							[9]	
Imag Repr Text	Medical Image Analysis and Classification Image Segmentation- Pixel Based, Edge Based, Region Based Segmentation. Image Representation and Analysis, Feature Extraction and Representation, Statistical, Shape, Texture, Feature and Image Classification — Statistical, Rule Based, Neural Network Approaches.							[9]	
Image Registrations and Visualization Rigid Body Visualization, Principal Axis Registration, Interactive Principal Axis Registration, Feature Based Registration, Elastic Deformation Based Registration, Image Visualization — 2D Display Methods, 3D Display Methods, Virtual Reality Based Interactive Visualization.							[9]		
							To	otal Hours	45
	book(s):							
Atam P.Dhawan, "Medical Image Analysis", Wiley Interscience Publication, NJ, USA, 2 nd Edition 2011.									
2 Anil. K. Jain, "Fundamentals of Digital Image Processing", Pearson education, Indian Reprint 2003.									
Reference(s):									
John L.Semmlow,"Biosignal and Biomedical Image Processing Matlab Based applications", Marcel Dekker Inc.,New York,2004									
2.	Taylo	or and Fran	cis, New Y	ork, 2006				rocessing",	CRC –
3.		Gonzalez a ation, 2002		oods, "Digit	al Image F	Processing"	, 2 nd Editior	n, Pearson	_

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE

S. No.	Topics	No. of hours
1.0	Image Fundamentals	
1.1	Image Perception	1
1.2	MTF of the Visual System	1
1.3	Image Fidelity Criteria	1
1.4	Image Model	1
1.5	Image Sampling and Quantization	1
1.6	Two-Dimensional Sampling Theory	1
1.7	Image Quantization, Optimum Mean Square Quantizer	1
1.8	Image Transforms – DFT, DCT	1
1.9	KLT, SVD	1
2.0	Image Enhancement and Restoration	
2.1	Histogram Equalization and Specification Techniques	1
2.2	Noise Distributions,	1
2.3	Spatial Averaging, Directional Smoothing,	1
2.4	Median, Geometric Mean, Harmonic Mean,	1
2.5	Contra Harmonic Mean Filters, Homomorphic Filtering	1
2.6	Color Image Enhancement	1
2.7	Image Restoration - Degradation Model,	1
2.8	Unconstrained and Constrained Restoration	1
2.9	Inverse Filtering-Wiener Filtering	1
3.0	Medical Image Representation	
3.1	Pixels and Voxels – Algebraic Image	2
3.2	Operations - Gray Scale and Color Representation	1
3.3	Depth-Color and Look Up Tables	1
3.4	Image File Formats	1
3.5	DICOM- Other Formats	1
3.6	Analyze 7.5 Nifti and Interfile	2
3.7	Image Quality and the Signal to Noise Ratio	1
4.0	Medical Image Analysis and Classification	
4.1	Image Segmentation	1
4.2	Pixel Based, Edge Based, Region Based Segmentation	2
4.3	Image Representation and Analysis	1
4.4	Feature Extraction and Representation	2
4.5	Statistical, Shape, Texture, Feature	1
4.6	Image Classification	1
4.7	Neural Network Approaches	1
5.0	Image Registrations and Visualization	
5.1	Rigid Body Visualization	2
5.2	Principal Axis Registration	1
5.3	Interactive Principal Axis Registration	1
5.3 5.4	 	
5.4	Feature Based Registration Elastic Deformation Based Registration	1

Chairman
CHAIRMAN 85 AFT OF STUDIES
Department of ECE

5.6	Image Visualization – 2D Display Methods, 3D Display Methods	1		
5.7	Virtual Reality Based Interactive Visualization	2		
Course Designer(s)				

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE

Mrs.S.S.Thamilselvi - <u>sstamilselvi@ksrct.ac.in</u>

70 PVL E43	Data Science and	Category	L	Т	Р	Credit
	Engineering	PE	3	0	0	3

- To understand the concepts and technologies in data science
- To explore the concepts in statistical inference and exploratory data analysis
- To understand the basic machine learning algorithms
- To explore the effective visualization of given data using visualization tools
- To implement the data science applications

Build data science applications

Pre-requisites

• Nil

CO₅

Course Outcomes						
On the successful completion of the course, students will be able to						
CO1	Understand					
CO2	Explain mathematical foundations needed for data Science and perform Exploratory Data Analysis.	Understand				
CO3	Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic Regression, decision trees, neural networks and clustering.	Apply				
CO4	Create effective visualization of given data	Apply				

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	3	-	3	-			
CO2	3	3	3	-	3	-			
CO3	3	3	3	-	3	-			
CO4	3	3	3	-	3	-			
CO5	3	3	3	-	3	-			
3 - St	3 - Strong; 2 - Medium; 1 - Some								

Assessment Pattern

Bloom's Category	Continuous Assessi	End Sem Examination (Marks)					
	1	2					
Remember	30	10	20				
Understand	30	10	20				
Apply	-	40	60				
Analyse	-	-	-				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

Apply

Sylla	Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2025								
	M.E-VLSI Design								
	70 PVL E43-Data Science and Engineering								
Sem	ester	<u> </u>	lours/Wee		Total	Credit		ximum Mai	
		L	I	Р	Hours	С	CA	ES	Total
		3	0	0	. 45	3	40	60	100
Intro Com Acqu Exar Worl	Introduction to core concepts and technologies Introduction, Terminology, Data-Properties of Data, Types of data, Why Data Science? Computer Science, Data Science, and Real Science, data science process, Data Acquisition and Data Science Life Cycle, Ethics in Data Science, data science toolkit, Example applications. Data wrangling: Sources of data, Data collection and API, Working with data: Reading Files, Cleaning Data.								[9]
Stati Expl	stical tl oratory	hinking in D Data Analy	ata Scienc ysis: Philos	ophy of Exp	alysis al Inference, oloratory Da x, Outlier de	ta Analysis	, Data visua		[9]
Brief Regu Cros Dime	f introdi ularizat ss Vali ensiona	uction, Line ion, Suppo dation, Lat	rt vector moel Encodir on, Manifol	mial Regre iachines, E ng, Randoi	ssion, Logis xtreme lear m Forests, 2D/3D Conv	ning mach Decision	ines, Naive Trees, Clu	Bayes, stering,	[9]
Intro tools visua Tabl	Data visualization Introduction, Types of data visualization, Data Visualization - Basic principles, ideas and tools for basic data visualization tools (plots, graphs and summary statistics)- various visualization techniques used in Data Science. Data visualization Tool: Working with Tableau, Creating charts, Mapping data in Tableau. create your own visualization of a complex dataset							[9]	
App Case	Applications of Data Science Case Studies of Data Science Application, Recommender Systems on Real World Data Sets, Weather forecasting, Stock market prediction, Object recognition, Matching Skills to						[9]		
1	Text book(s):								45
Text	book(s):					To	otal Hours	45
1	Cathy 2015	, O'Neil, Ra		. •	ta Science,	Ţ,	lk from The	Frontline",	
	Cathy 2015	, O'Neil, Ra		. •	ta Science, First Princip	Ţ,	lk from The	Frontline",	
2	Cathy 2015 Joel (erence(y O'Neil, Ra Grus, "Data (s):	Science fro	m Scratch:	First Princip	les with Pyt	lk from The	Frontline", (O'Reilly,
2	Cathy 2015 Joel (erence(Jure Cam	, O'Neil, Ra Grus, "Data s): Leskovek, bridge Univ	Science fro Anand Raersity Press	m Scratch: ajaraman, s, 2014.	First Princip	les with Pyt	lk from The hon", O'Rei	Frontline", (illy Media.	O'Reilly, ts. v2.1,
1 2 Refe	Cathy 2015 Joel (Frence(Jure Cam Aurél Tools	y O'Neil, Ra Grus, "Data s): Leskovek, bridge Univ lien Géron, s, and Tech	Anand Raersity Press "Hands-On	m Scratch: ajaraman, s, 2014. Machine L suild Intellig	First Princip Jeffrey Ullr earning with	nan, Minin Scikit-Lea ", 1 st Editio	lk from The hon", O'Rei g of Mass arn and Ten on, O'Reilly	Frontline", (illy Media. live Datase sor Flow: C Media	O'Reilly, ts. v2.1, oncepts,
1 2 Refe	Cathy 2015 Joel Cerence(Jure Cam Aurél Tools Jiawe Kaufi	y O'Neil, Ra Grus, "Data s): Leskovek, bridge Univ lien Géron, s, and Tech ei Han and mann Publi	Anand Raersity Press "Hands-Onniques to B Jian Pei, shers	m Scratch: ajaraman, s, 2014. Machine L uild Intellige "Data Mini	First Princip Jeffrey Ullr earning with	nan, Minin n Scikit-Lea 5", 1 st Edition ts and Tec	lk from The hon", O'Rei g of Mass arn and Ten on, O'Reilly	Frontline", (illy Media. live Datase sor Flow: C Media	O'Reilly, ts. v2.1, oncepts,

Chairman
Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE

Course C	ontents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Introduction to Core Concepts and Technologies	
1.1	Introduction, Terminology, Data-Properties of Data, Types of Data	1
1.2	Why Data Science? Computer Science, Data Science, and Real Science, Data Science Process	1
1.3	Data Acquisition and Data Science Life Cycle	1
1.4	Ethics in Data Science, Data Science Toolkit, Example Applications.	2
1.5	Data Wrangling: Sources of Data	1
1.6	Data Collection and API	1
1.7	Working with Data: Reading Files, Cleaning Data.	1
2.0	Statistical Inference, Exploratory Data Analysis:	
2.1	Statistical Thinking in Data Science	1
2.2	Statistical Inference, Statistical Analysis, Modeling	2
2.3	Exploratory Data Analysis & Data Visualization	2
2.4	Missing Value Analysis	2
2.5	The Correction Matrix, Outlier Detection Analysis	2
3.0	Basic Machine Learning Algorithms	_
3.1	Brief Introduction, Linear / Polynomial Regression, Logistic Regression	1
3.2	Classification, Regularization	1
3.3	Support Vector Machines, Extreme Learning Machines, Naive Bayes	2
3.4	Cross Validation, Label Encoding	1
3.5	Random Forests, Decision Trees	1
3.6	Clustering, Dimensionality Reduction	1
3.7	Manifold Learning, 2D/3D Convolution	1
3.8	Introduction to Neural Networks	1
4.0	Data Visualization	'
4.1	Introduction, Types of Data Visualization, Data Visualization	1
4.2	Basic Principles, Ideas and Tools for Basic Data Visualization Tools (Plots, Graphs and Summary Statistics)-	2
4.3	Data Extraction and Filtering, Data Visualization Principles.	2
4.4	Data Visualization Tool: Random Sample Generation Using Tableau, Remote Database Connectivity	2
4.5	Creating Charts	1
4.6	Mapping Data in Tableau	1
4.7	Create Your Own Visualization of a Complex Dataset	1
5.0	Applications of Data Science	
5.1	Case Studies of Data Science Application	2
5.2	Recommended Systems on Real World Data Sets	1
5.3	Weather Forecasting	1
5.4	Stock Market Prediction	2
5.5	Object Recognition	1
5.6	Matching Skills to Job	1

K.Gogila Devi - gogiladevi@ksrct.ac.in

70 PVI F44	Data Converters IC Design	Category	L	Т	Р	Credit
70 F V L E44	Data Converters ic Design	PE	3	0	0	3

- To Understand the Fundamentals of Data Conversion.
- To Design and Analyze Switched-Capacitor Circuits and Comparators.
- To Comprehend Nyquist-Rate DAC Architectures.
- To Evaluate Pipeline and Other ADC Architectures
- To Explore Sigma-Delta Conversion Techniques

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

On the successful completion of the course, students will be able to					
CO1	Explain the design calculations for developing the various blocks	Understand			
	associated with a typical CMOS AD or DA converter.				
CO2	Design and implement circuits using switched capacitor concepts	Apply			
002					
CO3	Analyze and design D/A converters	Analyse			
CO4	Design different types of A/Ds	Apply			
CO5	Analyze and design sigma delta converters	Apply			

Mapping with Programme Outcomes

COs	POs							
COS	1	2	3	4	5	6		
CO1	3	3			2	3		
CO2	3	3	3	3	2	3		
CO3	3	3		3	2	3		
CO4	3	3			2	3		
CO5	3	3	3	3	2	3		
3 - Strong; 2 - Medium; 1 - Some								

Bloom's	Continuous Assess	End Sem	
Category	1	2	Examination (Marks)
Remember	14	6	10
Understand	14	6	10
Apply	22	38	70
Analyse	10	10	10
Evaluate	-	-	-
Create	-	-	-
Total	60	60	100

Passed in BoS Meeting held on 13/06/2025 Approved in Academic Council Meeting held on 19/07/2025

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE
K.S.Rangasamy College of Technology,
Tiruchengode - 637 215.

Syllabus								
	K.S	.Rangasam				omous R2	025	
		70 D		E-VLSI Desi ata Conver	_	-laus		
		Hours/Weel		Total	Credit	•	ximum Mar	ke
Semester	Semester L T P Hours C CA ES						Total	
III	3	0	0	45	3	40	60	100
Introduction & characteristics of AD/DA converter characteristics Evolution, types and applications of AD/DA characteristics, issues in sampling, quantization and reconstruction, oversampling and antialiasing filters.							uantization	[9]
Switch cap Switched-ca mode feedb comparator, Calibration t	pacitor am ack. Single Iatched co echniques	plifiers, swite stage ampl mparators. o	ched capac ifier as com	parator, cas	scaded amp	olifier stages	s as	[9]
NYQUIST rate D/A converters Current Steering DACs, capacitive DACs, Binary weighted versus thermometer DACs, issues in current element matching, clock feed through, zero order hold circuits, DNL, INL and other performance metrics of ADCs and DACs						[9]		
Pipeline an Performance architecture	e metrics, F	lash archite		lined Archite	ecture, Suc	cessive app	roximation	[9]
architecture, Time interleaved architecture. SIGMA DELTA converters STF, NTF, first order and second order sigma delta modulator characteristics, Estimating the maximum stable amplitude, CTDSMs, Opamp nonlinearities							[9]	
Total Hours: 45 + 15(Tutorial)							60	
Text Book(s): 1. Shanthi Pavan, Richard Schreier, Gabor C. Temes, "Understanding Delta-Sigma Data Converters", 2 nd Edition, Willey-IEEE Press, 2017							1	
2. Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog								
	•	on, 2 nd Editi	on, Kluwer	Acedamic F	Publishers,	December	2010	
Reference			_	_		_		-
		G. Manolal Edition, Pi				ciples, Algo	rithms and	

^{*}SDG 4: Quality education.

^{**}SDG 9: Promote inclusive and sustainable industrialization

Course (Course Contents and Lecture Schedule					
S. No.	Topics	No. of hours				
1.0	Introduction& Characteristics of AD/DA converter characteristics					
1.1	Evolution	1				
1.2	types and applications of AD/DA characteristics	2				
1.3	Issues in sampling	2				
1.4	quantization and reconstruction	2				
1.5	oversampling and antialiasing filters	2				
2.0	Switch capacitor circuits and comparators					
2.1	Switched-capacitor amplifiers	1				
2.2	switched capacitor integrator	1				
2.3	switched capacitor common mode feedback	1				
2.4	Single stage amplifier as comparator	1				
2.5	latched comparators	1				
2.6	offset cancellation	1				
2.7	Op Amp offset cancellation	1				
2.9	, Calibration techniques	1				
3.0	NYQUIST rate d/a converters					
3.1	Current Steering DACs	1				
3.2	capacitive DACs	1				
3.3	Binary weighted versus thermometer DACs	1				
3.4	issues in current element matching	1				
3.5	clock feed through	1				
3.6	zero order hold circuits	1				
3.7	DNL	1				
3.8	INL and other performance metrics of ADCs and DACs	2				
4.0	Pipeline and other ADCs					
4.1	Performance metrics	1				
4.2	Flash architecture	2				
4.3	Pipelined Architecture	2				
4.4	Time interleaved architecture	2				
4.5	Successive approximation architecture	2				
5.0	SIGMA DELTA converters					
5.1	STF	2				
5.2	NTF	1				
5.3	first order and second order sigma delta modulator characteristics	2				
5.4	Estimating the maximum stable amplitude	2				
5.5	CTDSMs	1				
5.6	Opamp nonlinearities	2				

Mrs.V.P.Kalaiyarasi- kalaiyarasivp@ksrct.ac.in

70 PVL E45	Mixed Signal VLSI Design	Category	L	T	Р	Credit
70 F VL E43	Wilked Signal VESI Design	PE	3	0	0	3

- To know the types of filters for VLSI circuits.
- To explain the different techniques of ADC for mixed signal circuits.
- To introduce the different techniques of DAC for mixed signal circuits.
- To learn about sigma delta converters for mixed signal circuits.
- To learn the design methodologies and EDA tools for mixed signal VLSI circuits

Pre-requisites

• Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe the concept of different filter for VLSI circuit design.	Apply
CO2	Explain the function of continuous time filter in MOS technology for mixed signal circuits.	Apply
CO3	Apply DAC and ADC techniques for data conversions using CMOS Technologies.	Apply
CO4	Illustrates the concept of sigma delta converter method for VLSI Circuits.	Apply
CO5	Design a complete mixed signal system using EDA tools.	Analyze

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	2	3	-	3			
CO2	3	3	3	3	-	3			
CO3	3	3	3	3	3	3			
CO4	3	-	2	3	2	3			
CO5	3	3	3	3	3	3			
3 - St	3 - Strong; 2 - Medium; 1 - Some								

Assessment Pattern

Bloom's Category	Continuous Assess	End Sem Examination (Marks)					
	1	2					
Remember	12	10	20				
Understand	28	30	50				
Apply	20	10	20				
Analyse	-	10	10				
Evaluate	-	-	-				
Create	-	-	-				
Total	60	60	100				

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE
Chairment of ECE

Sylla	Syllabus								
	K.S.Rangasamy College of Technology – Autonomous R2025								
	M.E-VLSI Design 70 PVL E45- Mixed Signal VLSI Design								
Sem	ester	<u>'</u>	Hours/Wee		Total Hours	Credit		ximum Mai	
		3	T 0	P	45	C 3	CA 40	ES 60	Total
			0	0	_	3	40	60	100
Active Filters & Switched Capacitor Filters Switched Capacitor (SC) Circuits: Parasitic Insensitive Switched Capacitor Amplifiers- Insensitive Integrators - Signal Flow - Graph Analysis - Switched capacitor filters and Resistors - Comparators - CMOS, BICMOS Sample-and- Holds - Linearity, Fully Differential Switched Capacitor Circuits - Noise in Switched Capacitor Circuits - Integrator- Biquadratic SC Filter- SC N-Path Filters.								[9]	
Introd Triod - Tur Block	ductior de Tran ning Cir k- First	sistors, Ac cuitry - Dyr and Secor	Filters - Bip tive Transis namic Rang nd Order Fil	tors - BiCN e Performa ters.	onductors - IOS transco nce -Eleme	nductors -	MOSFET C	Filters	[9]
Type DAC Linea ADC Inter	Digital to Analog & Analog to Digital Converters Types of DAC's: Current Switched, Resistive, Current Cell Design in Current Steering DAC, Hybrid Converters, Segmented Converters DAC's - Techniques for Improving Linearity - Analog to Digital Converters: Quantization Errors - non-Idealities - Types of ADC's: Flash, folding ADC's, Multiple-Bit Pipeline ADCs and SAR ADC, Time - Interleaved A/D Converters							[9]	
Over Impe	r Samp erfection na Delt	ns - First C	ters - Over : Irder Modul	ator - Deci	vithout Noise mation Filte ta Sigma M	rs - Second	d Order Mo	dulator -	[9]
Analog and Mixed Signal Extensions to HDL Language Design Objectives - Theory of Differential Algebraic Equations - the 1076 .1 Language - Tolerance Groups - Conservative Systems - Time and the Simulation Cycle - A/D and D/A Interaction - Quiescent Point - Frequency Domain Modeling and Examples-Analog Extensions to Verilog: Mixed Signal HDL Design Flow- data types - Expressions - Signals- Analog behavior - Hierarchical Structures - Mixed Signal Interaction						on Cycle eling and a types - ed Signal	[9]		
—	.1 1 /	- \-					T	otal Hours	45
	book(ad I/ars NAs	- "ΛI I	الملم مسجلت بال	ina. it Daa's	o" lole - \A/'	av and 0	2010
2.	 David A Johns and Ken Martin, "Analog Integrated Circuit Design", John Wiley and Sons, 2016. Rudy van de Plassche, "Integrated Analog-to-Digital and Digital-to-Analog Converters", Kluwer, 2014. 								
Refe	Reference(s):								
1.									
2.	Educ	ation, 2011	•					^d Edition, P	earson
3.				-	esign", Tata				
4.		Taur and T s, 2016.	Гак H.Ning,	"Fundameı	ntals of Mod	lern VLSI D	evices", Ca	ımbridge Un	iversity

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE

Course C	Contents and Lecture Schedule	
S. No.	Topics	No. of hours
1.0	Introduction to Active Filters & Switched Capacitor Filters	
1.1	Switched Capacitor (SC) Circuits: Parasitic Insensitive Switched Capacitor Amplifiers	2
1.2	Insensitive Integrators - Signal Flow - Graph Analysis -Switched Capacitor Filters and Resistors	2
1.3	Comparators - CMOS, BICMOS Sample-and-Holds	2
1.4	Linearity, Fully Differential Switched Capacitor Circuits - Noise in Switched Capacitor Circuits	1
1.5	Integrator- Biquadratic SC Filter	1
1.6	SC N-Path Filters.	1
2.0	Continuous Time Filters	
2.1	Introduction to Gm - C Filters	1
2.2	Bipolar Transconductors	1
2.3	CMOS Transconductors using Triode Transistors, Active Transistors	2
2.4	BiCMOS transconductors	1
2.5	MOSFET C Filters - Tuning Circuitry	1
2.6	Dynamic Range Performance - Elementary Transconductor Building Block	2
2.7	First and Second Order Filters	1
3.0	Digital to Analog & Analog to Digital Converters	I
3.1	Types of DAC's: Current Switched, Resistive, Current Cell Design in Current Steering DAC	2
3.2	Hybrid Converters, Segmented Converters DAC's	2
3.3	Techniques for Improving Linearity - Analog to Digital Converters	1
3.4	Quantization Errors - Non-Idealities - types of ADC's: Flash, Folding ADC's	2
3.5	Multiple-Bit Pipeline ADCs and SAR ADC, Time-Interleaved A/D Converters	2
4.0	Sigma Delta Converters	
4.1	Over Sampled Converters - Over Sampling without Noise & with Noise	2
4.2	Implementation Imperfections - First Order Modulator	2
4.3	Decimation Filters - Second Order Modulator	1
4.4	Sigma Delta DAC & ADC's	2
4.5	Discrete Delta Sigma Modulator-Based ADC using MATLAB	1
5.0	Analog and Mixed Signal Extensions to HDL	I
5.1	Introduction - Language Design Objectives - Theory of Differential Algebraic Equations	1
5.2	The 1076 .1 Language - Tolerance groups	1
5.3	Tolerance Groups - Conservative Systems - Time and the Simulation Cycle	2
5.4	A/D and D/A Interaction - Quiescent Point - Frequency Domain Modeling and Examples	2
5.5	Analog Extensions to Verilog: Mixed Signal HDL Design Flow- Data Types - Expressions	2
5.6	Signals- Analog Behavior - Hierarchical Structures –Mixed Signal interaction	2

Ms.R.Ramya – rramya@ksrct.ac.in

Chairman
CHAIRMAN 80 ARD OF STUDIES
Department of ECE

70 PVL E51	System Verilog	Category	L	Т	Р	Credit
		PE	3	0	2	4

- To understand the end-to-end functional verification flow, including directed vs. constrained-random testing.
- To apply layered test bench architecture by constructing drivers, monitors, scoreboards, and agents in System Verilog.
- To remember and use key language constructs (data types, procedural blocks, simple assertions) to model test bench behavior.
- To create modular, object-oriented verification components using classes, inheritance, and encapsulation.
- To analyse functional coverage data (cover groups, cover points, crosses) to measure and drive verification completeness.

Pre-requisites

• Verilog HDL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply both directed and constrained-random stimulus generation within a layered testbench.	Apply
CO2	Implement System Verilog essentials (arrays, tasks/functions, assertions) in testbench code.	Apply
CO3	Create reusable OOP-based components (classes, dynamic objects) following best practices.	Create
CO4	Analyze and coordinate concurrent processes (fork-join, events, mailboxes, semaphores) for synchronization.	Analyze
CO5	Evaluate functional coverage results to guide further test development and achieve closure.	Evaluate

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	3	2	2	3			
CO2	3	3	3	2	2	3			
CO3	3	3	3	2	2	3			
CO4	3	3	3	2	2	3			
CO5	3	3	3	2	2	3			
3 - St	rong; 2	2 - Med	lium; 1	- Som	e				

Bloom's	Contir		sessment ' arks)	Tests	Model Examination	End Sem Examination		
Category	Test 1		Test 2		(Marks)	(Marks)		
	Theory	Lab	Theory	Lab	Lab	Theory	Lab	
Remember	-	-	-	-	-	20	_	
Understand	30	10	30	10	10	60	10	
Apply	30	90	30	90	90	20	90	
Analyse	-	-	-	-	-	-	-	
Evaluate	-	-	-	-	-	-	-	
Create	-	-	-	-	-	-	-	

Total	60	100	60	100	100	100	100

K.S.Rangasamy College of Technology – Autonomous R2025 M.E-VLSI Design 70 PVL E51- System Verilog Hours/Week Total Credit Maximum Marks							
Hours/Week Total Credit Maximum Marks							
Hours/Week Total Credit Maximum Marks							
Samestar							
L I P Hours C CA ES	Tota						
III 3 0 2 75 4 50 50	100						
Advanced Verification Methodology* Introduction to Functional Verification, Verification Process and Planning, Directed vs Constrained-Random Testing, Layered Test bench Architecture, Overview of System Verilo Verification Methodologies (OVM, UVM), Functional Coverage Basics and Goals, Components of a Modern Test bench: Driver, Monitor, Scoreboard, Agent	g [9]						
System Verilog Language Essentials Built-in and User-defined Data Types, Packed vs. Unpacked Arrays, Queues, Dynamic Arrays Associative Arrays, Typedefs, Enums, Structures, and Unions, Constants, Strings, and Syster Verilog Assertions (intro), Procedural Code: Initial, Always, Fork- Join, Tasks and Functions (voic automatic, local variables)	n [9]						
Object-Oriented Programming in System Verilog Classes and Object Creation, Class Inheritance and Polymorphism, Constructors an Destructors, Dynamic Objects and Shallow/Deep Copy, Encapsulation: Public, Private, Loca Scope Resolution and Static Variables, Creating and Managing Multiple Objects, OOP Bes Practices in Test bench Design	I, roi						
Concurrency, Inter-Process Communication, and Functional Coverage Fork-Join and Threading Concepts, Events, Mailboxes, Semaphores, Inter-proces Synchronization in Test benches, Functional Coverage Concepts and Goals, Covergroups Coverpoints, Cross Coverage, Parameterized Covergroups, Coverage Data Analysis an Reporting, Building Coverage-Driven Test benches	s, _{[91}						
Case Study – Complete System Verilog Verification Environment** Case Study: Design and Verification of ATM Module, Interface and Modport Design, Virtual Interfaces and Encapsulation, Top-Level Design Integration, Test bench Components: Generato Driver, Monitor, Scoreboard, Test Scenarios and Coverage Collection, Reusability an Maintainability Practices	r,						
Practical: 1. Design a Test bench for 2x1 Mux Using Gates 2. Implementation of a Mailbox by Allocating Memory 3. Implementation and Testing of Semaphore for a Simple DUT 4. Implementation of Scoreboard for a Simple DUT							
Total Hours: (Lecture – 45; Practical -	(0) 75						
Text book(s):							
1 Chris Spear, "System Verilog for Verification: a Guide to Learning The Test bench Langua Features", Springer, 2016.	ge						
2 UVM— "Buyer's Guide and Verification Methodology", Janick Bergeron, Springer, 2015							

	System Verilog for Hardware Design and Modeling", 2 ^{re} Edition, Springer,
2	Ashok B. Mehta and Alexandru Duta, Wiley "Functional Verification Coverage Measurement and Analysis", -IEEE Press, 2015
3	Shawn Honess & Sagar R. Gupta , "Practical UVM: A Guide to Building a Universal Verification Methodology Testbench", VHDL Insights, 2016

^{*} SDG 4 – Quality Education ** SDG 9 – Industry, Innovation, and Infrastructure

S. No.	Topics	No. of
1	Advanced Verification Methodology	hours
1.1	Introduction to Functional Verification,	1
1.2	Verification Process and Planning,	1
1.3	Directed vs. Constrained-Random Testing,	1
1.4	Layered Test bench Architecture,	1
1.5	Overview of System Verilog Verification Methodologies (OVM)	1
1.6	Overview of System Verilog Verification Methodologies (UVM),	1
1.7	Functional Coverage Basics and Goals,	1
1.8	Components of a Modern Test bench: Driver, Monitor	1
1.9	Components of a Modern Test bench: Scoreboard, Agent	1
2	System Verilog Language Essentials	
2.1	Built-in and User-defined Data Types	1
2.2	Packed vs. Unpacked Arrays	1
2.3	Queues	1
2.4	Dynamic Arrays	1
2.5	Associative Arrays	1
2.6	Typedefs, Enums, Structures, and Unions, Constants, Strings	1
2.7	System Verilog Assertions (intro)	1
2.8	Procedural Code: Initial, Always, Fork-Join	1
2.9	Tasks and Functions (void, automatic, local variables)	1
3	Object-Oriented Programming in System Verilog	
3.1	Classes and Object Creation	1
3.2	Class Inheritance and Polymorphism	1
3.3	Constructors and Destructors	1
3.4	Dynamic Objects	1
3.5	Shallow/Deep Copy	1
3.6	Encapsulation: Public, Private, Local	1
3.7	Scope Resolution and Static Variables	1
3.8	Creating and Managing Multiple Objects	1
3.9	OOP Best Practices in Testbench Design	1
4	Concurrency, Inter-Process Communication, and Functional Coverage	-1
4.1	Fork-Join and Threading Concepts	1
4.2	Events, Mailboxes, Semaphores	1
4.3	Inter-process Synchronization in Testbenches	1
4.4	Functional Coverage Concepts and Goals,	1
4.5	Cover groups, Cover points	1
4.6	Cross Coverage	1

Chairman
Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE

4.7	Parameterized Cover groups	1
4.8	Coverage Data Analysis and Reporting	1
4.9	Building Coverage-Driven Testbenches	1
5	Case Study – Complete System Verilog Verification Environment	•
5.1	Design and Verification of ATM Module,	1
5.2	Interface and Modport Design,	1
5.3	Virtual Interfaces and Encapsulation,	1
5.4	Top-Level Design Integration,	1
5.5	Testbench Components: Generator, Driver	1
5.6	Testbench Components: Monitor, Scoreboard,	1
5.7	Test Scenarios and Coverage Collection,	1
5.8	Reusability Practices	1
5.9	Maintainability Practices	1
Practica	al:	•
1.	Design a Testbench for 2x1 Mux Using Gates	7
2.	Implementation of a Mailbox by Allocating Memory	8
3.	Implementation and Testing of Semaphore for a Simple DUT	7
4.	Implementation of Scoreboard for a Simple DUT	8

Dr. D. Mugilan - mugilan@ksrct.ac.in

70 PVL E52	HDL for IC Design	Category	L	Т	Р	Credit
		PE	3	0	2	4

- To understand the basics of Verilog HDL
- To design digital systems using the different modeling
- To understand the HDL synthesis
- To learn verification process
- To test the design using testbench

Pre-requisites

• Design System Design, Verilog HDL

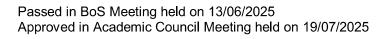
Course Outcomes						
On the successful completion of the course, students will be able to						
CO1	Apply digital design concepts and write Verilog programs	Apply				
CO2	Write Verilog programs using dataflow and behavioral modeling	Apply				
CO3	Synthesis the digital design for implementation in FPGA	Apply				
CO4	Understand the principles of verification process and System Verilog	Apply				
CO5	Interface test bench and design under test	Apply				

Mapping with Programme Outcomes

COs	POs								
COS	1	2	3	4	5	6			
CO1	3	3	3	3	3	3			
CO2	3	3	3	3	3	3			
CO3	3	3	3	3	3	3			
CO4	3	3	3	3	3	3			
CO5	3	3	3	3	3	3			
3 - Strong; 2 - Medium; 1 - Some									

Assessment Pattern

Bloom's	Continuous Assessment Tests (Marks)				Model Examination	End Sem Examination	
Category	Test 1		Test 2		(Marks)	(Marks)	
	Theory	Lab	Theory	Lab	Lab	Theory	Lab
Remember	-	-	-	-	-	20	-
Understand	30	10	30	10	10	60	10
Apply	30	90	30	90	90	20	90
Analyse	-	-	-	-	-	-	-
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-
Total	60	100	60	100	100	100	100


Syllabus									
K.S.Rangasamy College of Technology – Autonomous R2025									
M.E-VLSI Design 70 PVL E52- HDL for IC Design									
			Hours/Wee		Total	Credit	Ma	aximum Maı	rks
Semeste	ester	L	T	P	Hours	C	CA	ES	Total
	II	3	0	2	75	4	50	50	100
Introduction to Verilog Overview of Digital Design using Verilog HDL-Hierarchical Modeling Concepts-Verilog Operators and Modules-Verilog Ports, Data types and Assignments-Gate level modeling- Switch level modeling-Modeling of CMOS Gates and Boolean Functions.									[9]
Basid Beha Regis	Dataflow and Behavioral modeling Basics of dataflow modeling-Review of flip-flops-Verilog modeling of Flip-Flops-Basics of Behavioral Modeling-Verilog Modeling of Counters, Sequence Detector, FSMs and Shift Registers.								[9]
Verilog HDL Synthesis* Synthesis Design Flow-Verification of the Gate Level Net List-Modeling for Logic Synthesis-Example of Sequential Circuit Synthesis - FIR Filter Implementation-IIR filter Implementation.									[9]
Introduction to System Verilog** Verification Process- Basic Testbench Functionality - Directed Testing - Constrained-Random Stimulus, Functional Coverage, Testbench Components- Layered Testbench-Building a Layered Testbench- Simulation Environment Phases - Data types and procedural statements: Built-In Data Types- Fixed-Size Arrays- Dynamic Arrays-Queues- Associative Arrays- Array Methods- Choosing a Storage Type- Creating New Types with typedef- Creating User-Defined Structures- Type conversion- Enumerated Types- Task and Function Overview- Routine Arguments- Returning from a Routine.								[9]	
Connecting the Test bench and Design Separating the Test bench and Design-The Interface Construct-Stimulus Timing-Interface Driving and Sampling-Connecting It All Together-Top-Level Scope-Program - Module Interactions-System Verilog Assertions-The Four-Port ATM Router.									[9]
Practical: 1. Simulate the Combinational Circuits using Different Modeling 2. Design and Implement FSM 3. Design and Implement FIR and IIR filter 4. Verify the Digital Systems using System Verilog 5. Design and implement a System verilog test bench to verify a Four-Port ATM Router							[30]		
Total Hours: (Lecture - 45; Practical - 30)								75	
Text book(s):									
1	Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", 2 nd Edition, Pearson Education New Delhi, 2019								
2	Chris Spear, "System Verilog for Verification: A Guide to Learning the Test bench Language Features", 2 nd Edition, Springer, 2018.							anguage	
Reference(s):									
1	https://ocw.mit.edu - Massachusetts Institute of Technology Open Courseware.								
2	Michael D Ciletti , "Advanced Digital Design with the Verilog HDL", 2 nd Edition, PHI, 2019								
3	Stephen Brown and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog", 2 nd Edition, TMH, 2018								

^{*}SDG 9 – Industry, Innovation, and Infrastructure **SDG 7 – Affordable and Clean Energy

Jourse (Contents and Lecture Schedule	No.			
S. No.	Topics	of hours			
1.0	Verification Methodology	•			
1.1	Overview of digital design using Verilog HDL	1			
1.2	Hierarchical Modeling concepts	1			
1.3	Verilog Operators and Modules	1			
1.4	Verilog Ports, Data types and Assignments	1			
1.5	Gate level modelling	1			
1.6	Switch level modelling	1			
1.7	Modelling of CMOS gates	1			
1.8	Boolean functions	2			
2.0	Dataflow and behavioral modelling				
2.1	Basics of dataflow modelling	1			
2.2	Review of flip-flops	1			
2.3	Verilog modeling of flip-flops	2			
2.4	Basics of behavioral modelling	1			
2.5	Verilog modeling of counters	1			
2.6	Sequence Detector				
2.7	Finite State Machine (FSM)	1			
2.8	Shift Registers	1			
3.0	Verilog HDL Synthesis				
3.1	Synthesis Design Flow	1			
3.2	Verification of the gate level net list	4			
3.3	Modeling for logic synthesis	1			
3.4	Example of sequential circuit synthesis	1			
3.5	FIR filter implementation-IIR filter implementation	2			
4.0	Introduction to System Verilog	•			
4.1	Verification Process- Basic Testbench Functionality	1			
4.2	Directed Testing - Constrained-Random Stimulus	1			
4.3	Functional Coverage, Testbench Components	1			
4.4	Layered Testbench- Building a Layered Testbench	1			
4.5	Simulation Environment Phases	1			
4.6	Data types and procedural statements: Built-In Data Types	1			
4.7	Fixed-Size Arrays- Dynamic Arrays- Queues- Associative Arrays	1			
4.8	Array Methods- Choosing a Storage Type- Creating New Types with typedef- Creating User-Defined Structures- Type conversion	1			
4.9	Enumerated Types- Task and Function Overview- Routine Arguments- Returning from a Routine	1			
5.0	Connecting the Test bench and Design				
5.1	Separating the Test bench and Design	1			
5.2	The Interface Construct	1			
5.3	Stimulus Timing	1			
5.4	Interface Driving	1			
5.5	Sampling-Connecting It All Together	1			

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE

5.6	Top-Level Scope-Program	1
5.7	Module Interactions	1
5.8	System Verilog Assertions	1
5.9	The Four-Port ATM Router	1
Practical:		
1.	Simulate the Combinational Circuits using Different Modeling	7
2.	Design and Implement FSM	8
3.	Design and Implement FIR and IIR filter	7
4.	Verify the Digital Systems using System Verilog	8

Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE
Contract of Technology

Course Designer(s)

Mrs.V.P.Kalaiyarasi – <u>kalaiyarasivp@ksrct.ac.in</u>

70 PVL E53	Deep Learning —	Category	L	Т	Р	Credit
		PE	3	0	2	4

- To present the mathematical, statistical and computational challenges of building neural Networks,
- To study the concepts of back propagation & optimization algorithms,
- To introduce dimensionality reduction techniques,
- To study different deep neural networks and
- To study the optimization of deep networks

Pre-requisites

• Machine Learning Techniques

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design and develop deep neural network	Apply
CO2	Design, implement, and optimize deep autoencoder-based models for unsupervised feature extraction	Apply
CO3	Design, implement, and optimize Deep Stacking Networks (DSNs) and their variants	Apply
CO4	Explain the architecture of different DNN	Understand
CO5	Study the generator and discriminator components of GAN	Understand

Mapping with Programme Outcomes

COs			PC)s				
COS	1	2	3	4	5	6		
CO1	3	-	2	-	2	3		
CO2	3	-	3	2	3	3		
CO3	3	-	3	2	3	3		
CO4	3	-	3	2	3	3		
CO5	3	-	3	2	3	3		
3 - St	3 - Strong; 2 - Medium; 1 - Some							

Assessment Pattern

Bloom's	Conti		sessment arks)	Tests	Model Examination		Sem nation
Category	Tes	st 1	Te	st 2	(Marks)	(Ma	rks)
	Theory	Lab	Theory	Lab	Lab	Theory	Lab
Remember	10	-	10	-	-	30	-
Understand	20	10	20	10	10	30	10
Apply	20	80	20	80	70	30	80
Analyse	10	10	10	10	20	10	10
Evaluate	-	-	-	-	-	-	-
Create	-	-	-	-	-	-	-
Total	60	100	60	100	100	100	100

III	Syllabus								
Semester Hours/Week Total Credit Maximum Marks									
Name									
III 3 0 2 75 4 50 50 100 Deep Learning Networks A Three-Way Categorization, Deep Networks for Unsupervised or Generative Learning, Deep Networks for Supervised Learning, Hybrid Deep Networks, Regularization, Optimization in Deep Learning, Data set Augmentation, Dropout. Deep Autoencoders and Unsupervised Learning Use Of Deep Autoencoders To Extract Speech Features, Stacked Denoising Autoencoders, Transforming Autoencoders, Restricted Boltzmann Machines, Unsupervised Layer-Wise Pre-Training, Interfacing DNNs with HMMs, Attention & Transformers, Selected Applications in Speech and Audio Processing Deep Stacking Networks and Variants and Supervised Learning* A Basic Architecture Of The Deep Stacking Network, A Method For Learning The DSN Weights, The Tensor Deep Stacking Network, The Kernelized Deep Stacking network, Selected Applications in Object Recognition and Computer Vision Deep Convolution Neural Networks Architectures — AlexNet, VGGNet, DenseNet, ResNet - Training a: Weights Initialization, Batch Normalization, RCNN and YOLO architectures, Fully Convolutional Segmentations, Mask-RCNNs, LSTM Generative Models** Autoregressive Models, Variational auto Encoders, Reversible Flow, Generative Adversarial Networks- Building Blocks, Strength and Weakness, Implementing Generator and Discriminator. Practical: 1. Study the effect of batch normalization and dropout in neural network classifier 2. Google speech recognition using microphone input	Hours/Week Total Credit Maximum Ma							ximum Maı	ks
Deep Learning Networks A Three-Way Categorization, Deep Networks for Unsupervised or Generative Learning, Deep Networks for Supervised Learning, Hybrid Deep Networks, Regularization, Optimization in Deep Learning, Data set Augmentation, Dropout. Deep Autoencoders and Unsupervised Learning Use Of Deep Autoencoders To Extract Speech Features, Stacked Denoising Autoencoders, Transforming Autoencoders, Restricted Boltzmann Machines, Unsupervised Layer-Wise Pre-Training, Interfacing DNNs with HMMs, Attention & Transformers, Selected Applications in Speech and Audio Processing Deep Stacking Networks and Variants and Supervised Learning* A Basic Architecture Of The Deep Stacking Network, A Method For Learning The DSN Weights, The Tensor Deep Stacking Network, The Kernelized Deep Stacking network, Selected Applications in Object Recognition and Computer Vision Deep Convolution Neural Networks Architectures — AlexNet, VGGNet, DenseNet, ResNet - Training a: Weights Initialization, Batch Normalization, RCNN and YOLO architectures, Fully Convolutional Segmentations, Mask-RCNNs, LSTM Generative Models** Autoregressive Models, Variational auto Encoders, Reversible Flow, Generative Adversarial Networks- Building Blocks, Strength and Weakness, Implementing Generator and Discriminator. Practical: 1. Study the effect of batch normalization and dropout in neural network classifier 2. Google speech recognition using microphone input	Semester	L	Т	Р	Hours	С	CA	ES	Total
A Three-Way Categorization, Deep Networks for Unsupervised or Generative Learning, Deep Networks for Supervised Learning, Hybrid Deep Networks, Regularization, Optimization in Deep Learning, Data set Augmentation, Dropout. Deep Autoencoders and Unsupervised Learning Use Of Deep Autoencoders To Extract Speech Features, Stacked Denoising Autoencoders, Transforming Autoencoders, Restricted Boltzmann Machines, Unsupervised Layer-Wise Pre-Training, Interfacing DNNs with HMMs, Attention & Transformers, Selected Applications in Speech and Audio Processing Deep Stacking Networks and Variants and Supervised Learning* A Basic Architecture Of The Deep Stacking Network, A Method For Learning The DSN Weights, The Tensor Deep Stacking Network, The Kernelized Deep Stacking network, Selected Applications in Object Recognition and Computer Vision Deep Convolution Neural Networks Architectures — AlexNet, VGGNet, DenseNet, ResNet - Training a: Weights Initialization, Batch Normalization, RCNN and YOLO architectures, Fully Convolutional Segmentations, Mask-RCNNs, LSTM Generative Models** Autoregressive Models, Variational auto Encoders, Reversible Flow, Generative Adversarial Networks- Building Blocks, Strength and Weakness, Implementing Generator and Discriminator. Practical: 1. Study the effect of batch normalization and dropout in neural network classifier 2. Google speech recognition using microphone input	III	3	0	2	75	4	50	50	100
Use Of Deep Autoencoders To Extract Speech Features, Stacked Denoising Autoencoders, Transforming Autoencoders, Restricted Boltzmann Machines, Unsupervised Layer-Wise Pre-Training, Interfacing DNNs with HMMs, Attention & Transformers, Selected Applications in Speech and Audio Processing Deep Stacking Networks and Variants and Supervised Learning* A Basic Architecture Of The Deep Stacking Network, A Method For Learning The DSN Weights, The Tensor Deep Stacking Network, The Kernelized Deep Stacking network, Selected Applications in Object Recognition and Computer Vision Deep Convolution Neural Networks Architectures — AlexNet, VGGNet, DenseNet, ResNet - Training a: Weights Initialization, Batch Normalization, RCNN and YOLO architectures, Fully Convolutional Segmentations, Mask-RCNNs, LSTM Generative Models** Autoregressive Models, Variational auto Encoders, Reversible Flow, Generative Adversarial Networks- Building Blocks, Strength and Weakness, Implementing Generator and Discriminator. Practical: 1. Study the effect of batch normalization and dropout in neural network classifier 2. Google speech recognition using microphone input	A Three-Way Categorization, Deep Networks for Unsupervised or Generative Learning, Deep Networks for Supervised Learning, Hybrid Deep Networks,								[9]
A Basic Architecture Of The Deep Stacking Network, A Method For Learning The DSN Weights, The Tensor Deep Stacking Network, The Kernelized Deep Stacking network, Selected Applications in Object Recognition and Computer Vision Deep Convolution Neural Networks Architectures — AlexNet, VGGNet, DenseNet, ResNet - Training a: Weights Initialization, Batch Normalization, RCNN and YOLO architectures, Fully Convolutional Segmentations, Mask-RCNNs, LSTM Generative Models** Autoregressive Models, Variational auto Encoders, Reversible Flow, Generative Adversarial Networks- Building Blocks, Strength and Weakness, Implementing Generator and Discriminator. Practical: 1. Study the effect of batch normalization and dropout in neural network classifier 2. Google speech recognition using microphone input	Use Of Autoenco Unsuper Transforr	Use Of Deep Autoencoders To Extract Speech Features, Stacked Denoising Autoencoders, Transforming Autoencoders, Restricted Boltzmann Machines, Unsupervised Layer-Wise Pre-Training, Interfacing DNNs with HMMs, Attention &						[9]	
Architectures — AlexNet, VGGNet, DenseNet, ResNet - Training a: Weights Initialization, Batch Normalization, RCNN and YOLO architectures, Fully Convolutional Segmentations, Mask-RCNNs, LSTM Generative Models** Autoregressive Models, Variational auto Encoders, Reversible Flow, Generative Adversarial Networks- Building Blocks, Strength and Weakness, Implementing Generator and Discriminator. Practical: 1. Study the effect of batch normalization and dropout in neural network classifier 2. Google speech recognition using microphone input	A Basic Architecture Of The Deep Stacking Network, A Method For Learning The DSN Weights, The Tensor Deep Stacking Network, The Kernelized Deep Stacking network,						[9]		
Autoregressive Models, Variational auto Encoders, Reversible Flow, Generative Adversarial Networks- Building Blocks, Strength and Weakness, Implementing Generator and Discriminator. Practical: 1. Study the effect of batch normalization and dropout in neural network classifier 2. Google speech recognition using microphone input	Architectures — AlexNet, VGGNet, DenseNet, ResNet - Training a: Weights Initialization, Batch Normalization, RCNN and YOLO architectures, Fully						[9]		
Study the effect of batch normalization and dropout in neural network classifier Google speech recognition using microphone input	Autoregressive Models, Variational auto Encoders, Reversible Flow, Generative Adversarial Networks- Building Blocks, Strength and Weakness, Implementing						[9]		
 Movie recommendations on Netflix/product recommendations on Amazon Image segmentation using VGGNet Generate handwritten digits similar to those in the MNIST dataset 	[30]								
Total Hours: (Lecture - 45; Practical - 30) 75	75								
Text book(s):									
	1 3 3 4 7 4 7 3 4 7 4 7 7 7 7 7 7 7 7 7 7								
. , ,			Yoshua Be	igio, Aaron	Courville, i	Jeep Leam	<u> </u>	000, 2010	
	Reference	(s):				,			
3. Francois Chollet, "Deep learning with Python" – Manning Publications	Reference 1. Mich	(s): ael Nielsen,	"Neural Ne	etworks and	Deep Learr	ning", Deter	mination Pr	ess, 2015	2015

^{*}SDG 9 – Industry, Innovation, and Infrastructure **SDG 3 – Good Health and Well-being

Course Contents and Lecture Schedule

S.No	Topics	No.of Hours			
1	Deep Learning Networks				
1.1	A three-way categorization	1			
1.2	Deep networks for unsupervised or generative learning	1			
1.3	Deep networks for supervised learning				
1.4	Hybrid deep networks	1			
1.5	Regularization	2			
1.6	Optimization in deep learning	1			
1.7	Data set Augmentation, Dropout	2			
1.8	Practical: Study the effect of batch normalization and dropout in neural network classifier	3			
2	Deep Autoencoders — Unsupervised Learning				
2.1	Use of deep autoencoders to extract speech features	1			
2.2	Stacked denoising autoencoders	1			
2.3	Transforming autoencoders	1			
2.4	Pre-Trained Deep Neural Networks — A Hybrid, Restricted Boltzmann machines	2			
2.5	Unsupervised layer-wise pre-training	1			
2.6	Interfacing DNNs with HMMs	1			
2.7	Attention & transformers	1			
2.8	Selected Applications in Speech and Audio Processing	1			
2.9	Practical: Google speech recognition using microphone input	3			
3	Deep Stacking Networ2ks and Variants —Supervised Learning				
3.1	A basic architecture of the deep stacking network	2			
3.2	A method for learning the DSN weights	2			
3.3	The tensor deep stacking network	1			
3.4	The Kernelized deep stacking network	2			
3.5	Selected Applications in Object Recognition and Computer Vision	2			
3.6	Practical: Movie recommendations on Netflix/product recommendations on	3			
0.0	Amazon				
4	Deep Convolution Neural Networks				
4.1	Architectures – AlexNet,	1			
4.2	VGGNet	1			
4.3	DenseNet	1			
4.4	ResNet - Training a: weights initialization, batch normalization	1			
4.5	RCNN	1			
4.6	YOLO architectures	1			
4.7	Fully convolutional segmentations	1			
4.8	Mask-RCNNs, LSTM	2			
4.9	Practical: Image segmentation using VGGNet	3			
5	Generative Models				

Chairman
Chairman
CHAIRMAN 85 AFB OF STUDIES
Department of ECE

5.1	Autoregressive models	1
5.2	Variational auto encoders	2
5.3	Reversible flow	1
5.4	Generative Adversarial Networks	1
5.5	Building blocks, Strength and weakness	2
5.6	Implementing generator and discriminator.	2
5.7	Practical: Generate handwritten digits similar to those in the MNIST dataset	3
Practica	lls:	
1.	Study the effect of batch normalization and dropout in neural network classifier	7
2.	Google speech recognition using microphone input	8
3.	Movie recommendations on Netflix/product recommendations on Amazon	4
4.	Image segmentation using VGGNet	4
5.	Generate handwritten digits similar to those in the MNIST dataset	7

Course Designer(s)

Mrs.S.S.Thamilselvi - sstamilselvi@ksrct.ac.in

70 PVL E54	Adaptive Signal Processing	Category	L	Т	Р	Credit
		PE	3	0	2	4

- To understand the concepts of stationary and non-stationary random signals and characterization of discrete-time random processes.
- To explain Non parametric and parametric methods for power spectrum estimation.
- To design optimum filters such as Wiener and Kalman filters.
- To design adaptive filtering techniques using LMS and RLS algorithm and understand the applications of adaptive filters.
- To learn the concepts of Continuous Wavelet, Transform and its applications

Pre-requisites

Digital Signal Processing

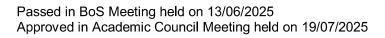
Course O	Course Outcomes						
On the suc	On the successful completion of the course, students will be able to						
CO1	Explain the mathematical description and signal modelling of discrete	Apply					
CO2	Apply various techniques for estimating the power spectrum of a	Apply					
CO3	Design different optimum filters	Analyse					
CO4	Design, implementation and analysis of FIR adaptive filters and	Analyse					
CO5	Discuss the concepts of CWT and its applications.	Understand					

Mapping with Programme Outcomes

COs			PC)s				
COS	1	2	3	4	5	6		
CO1	3	3	-	3	3	-		
CO2	3	3	-	-	3	3		
CO3	3	3	3	3	3	3		
CO4	3	3	3	3	3	3		
CO5	3	3	-	-	3	-		
3 - St	3 - Strong; 2 - Medium; 1 - Some							

Assessment Pattern

Bloom's	Conti		sessment irks)	Tests	Model Examination	End Sem Examination		
Category	Tes	Test 1		st 2	(Marks)	(Marks)		
	Theory	Lab	Theory	Lab	Lab	Theory	Lab	
Remember	20	_	10	-	-	30	_	
Understand	20	10	20	10	10	30	10	
Apply	20	80	20	80	70	30	80	
Analyse	10	10	10	10	20	10	10	
Evaluate	-	-	-	-	-	-	-	
Create	-	-	-	-	-	-	-	
Total	60	100	60	100	100	100	100	


Sylla	bus								
		K.S.	Rangasam		of Technolo		omous R2	2025	
			70 D\		-VLSI Desi				
70 PVL E54 - Adaptive Signal Processing Hours/Week Total Credit Maximum Ma									rke
Sem	ester	<u>'</u>	T	^ Р	Hours	C	CA	ES	Total
I	ll l	3	0	2	75	4	50	50	100
Disc	rete tir	ne Randoı	n Signals					1	
Discr Auto Wein Spec	Discrete Random Processes-Definitions-Ensemble Averages-Stationary Processes-Auto Covariance and Autocorrelation Matrices-Properties- Ergodicity- White noise-Weiner Khitchine Relation- Power Spectral Density —Filtering Random Processes-Spectral Factorization Theorem- Special Types of Random Processes — ARMA, AR, MA Processes-Pade approximation — Prony's method.								[9]
Non Perio Perfo using Reco	i-Paran odogra ormano g Yule ursion-	m, Barlett e comparis Walker W The Levins	nods: Perio t'smethod, sons -Paran lethod- the	Welch's I netric meth Levinson	Performanc Method ar ods - AR, M -Durbin Re n for Solvin	nd Blackma 1A, ARMA Secursion- D	an-Tukey Spectrum E Developme	Approach- stimation nt of the	[9]
Linea Wier Wier	ner Filte ner filte	num Mean er-Filtering, r-Discrete I		diction- IIR	E) Filtering: Wiener filte				[9]
FIR A	Adaptive Filters* FIR Adaptive filters - Newton's steepest descent method - Widrow-Hoff LMS Adaptive algorithm -Normalized LMS Algorithm- Applications - Noise cancellation - Channel equalization — Echo cancellation- Adaptive Recursive Filters - RLS adaptive algorithm						Channel	[9]	
Wave	elet bas olution	sis– STFT- Analysis(MRA) - Co	s time Wavenstruction	elet Transfo of Wavelets - Noise Re	s-Constructi	on of Orth	onormal	[9]
Prac	tical:								
3. 4.	 Power Spectral Density using Square Magnitude and Autocorrelation Method Estimate the PSD of a Noisy Signal using Periodogram and Modified Periodogram. Application of Optimum Filters 							[30]	
<u> </u>	Total Hours: (Lecture - 45; Practical - 30)							75	
1				al Digital Si	ignal Proces	ssing and M	odeling", J	ohn Wiley aı	nd Sons
2	Jaideva C Goswami and Andrew K Chan, "Fundamentals of Wavelets–Theory, Algorithms and Applications", John Wiley & Dr., Singapore, 2011.								
Refe	rence(ina Danati	\\\ O = £ -	"Discusts T	linn n Olemen I I	Dun no a a a la c	" Dag	
1.	Alan V Oppenheim, Ronald W Schafer, "Discrete Time Signal Processing", Pearson								
2.	Education India, 3 rd Edition, 2014.						hms and		
3.	Simo	n Havkin. "	Adaptive Filt	er Theory".	5 th Edition	, Pearson	2013.		
4.		en M.Kay, "						Prentice Hall	PTR,

^{*}SDG 9 – Industry, Innovation, and Infrastructure **SDG 3 – Good Health and Well-being

S. No.	Contents and Lecture Schedule Topics	No. of
		Hours
1.0	Discrete time Random Signals	
1.1	Discrete Random Processes Definitions	1
1.2	Ensemble Averages, Stationary processes	1
1.3	Auto Covariance and Autocorrelation Matrices-Properties Ergodicity	1
1.4	White Noise Weiner Khitchine relation Power Spectral Density	1
1.5	Filtering Random Processes: Spectral Factorization Theorem	1
1.6	Special types of Random Processes	1
1.7	ARMA, AR, MA Processes	1
1.8	Pade Approximation	1
1.9	Prony's Method.	1
2.0	Spectrum Estimation	
2.1	Non-Parametric Methods: Periodogram Performance of the Periodogram	1
2.2	Modified Periodogram	1
2.3	Barlett's Method	1
2.4	Welch's Method and Blackman-Tukey Approach Performance Comparisons	1
2.5	Parametric Methods: AR, MA, ARMA Spectrum	1
2.6	Estimation using Yule Walker Method	1
2.7	The Levinson-Durbin Recursion	1
2.8	Development of the Recursion	1
2.9	The Levinson Recursion Algorithm for Solving Toeplitz System of Equations.	1
3.0	Optimum Filters	
3.1	(LMMSE) Filtering: Wiener Hopf Equation	2
3.2	FIR Wiener Filter	1
3.3	Filtering & Linear Prediction	1
3.4	IIR Wiener Filter	1
3.5	Causal IIR Wiener Filter	1
3.6	Non causal IIR Wiener Filter	1
3.7	Discrete Kalman Filter.	2
4.0	Adaptive Filters	•
4.1	FIR Adaptive Filters	1
4.2	Newton's Steepest Descent Method	1
4.3	Widrow-Hoff LMS Adaptive Algorithm	1
4.4	Normalized LMS Algorithm	1
4.5	Noise Cancellation	1
4.6	Channel Equalization	1
4.7	Echo Cancellation	1
4.8	Adaptive Recursive Filters: RLS Adaptive Algorithm	2
5.0	Continuous Wavelet transform	·

Chairman
CHAIRMAN 85 AFT OF STUDIES
Department of ECE

5.1	Wavelet Basis STFT	1
5.2	Continuous Time Wavelet Transform (CWT)	2
5.3	Principles of Multi-Resolution Analysis (MRA)	1
5.4	Construction of Wavelets	1
5.5	Construction of Orthonormal Wavelets	1
5.6	Applications of Wavelet transform: Noise Reduction, Image Compression.	2
Practical		•
1.	Power Spectral Density using Square Magnitude and Autocorrelation Method	6
2.	Estimate the PSD of a Noisy Signal using Periodogram and Modified Periodogram.	6
3.	Application of Optimum Filters	6
4.	Adaptive Filter for Noise Cancellation in Sinusoidal Signal and System Identification using Adaptive filter	6
5.	Time-Frequency Analysis with the Continuous Wavelet Transform and Signal Reconstruction from continuous Wavelet Transform Coefficients	6

Course Designer(s)

- 1. Dr.P.Babu- pbabu@ksrct.ac.in
- 2. Ms.C.Saraswathy <u>—saraswathy@lsrct.ac.in</u>

Chairman
Chairman
CHAIRMAN BOARD OF STUDIES
Department of Ecce

70 PVL E55	MEMS System Design	Category	L	Т	Р	Credit
70 F V L E33	MEMO System Design	PE	3	0	2	4

- To introduce and provide a broad view of MEMS and micro systems.
- To familiarize with the fundamentals of MEMS products, materials for microsystems
- To learn the microsystem fabrication process
- To learn the various MEMS-specific design issues and constraints will be discussed in detail
- To know the applications of micro sensors and micro actuators

Pre-requisites

Electronic Circuits

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the basic principles of MEMS sensors and actuators.	Understand
CO2	Outline the various materials used for MEMS products.	Analyse
CO3	Familiarize with the fabrication process of MEMS devices.	Analyse
CO4	Analyze the design process in mems systems.	Analyse
CO5	Know the diverse applications of MEMS sensors	Understand

Mapping with Programme Outcomes

COs	POs									
COS	1	2	3	4	5	6				
CO1	3	3	3	-	-	-				
CO2	3	3	3	-	-	3				
CO3	3	-	3	-	3	3				
CO4	3	3	3	3	-	-				
CO5	3	3	3	-	3	3				
3 - St	rong; 2	2 - Med	lium; 1	- Som	e					

Assessment Pattern

Bloom's	Conti		sessment irks)	Tests	Model Examination	Examination Examina		
Category	Test 1		Test 2		(Marks)	(Marks)		
	Theory	Lab	Theory	Lab	Lab	Theory	Lab	
Remember	10	-	10	-	-	30	-	
Understand	10	10	20	10	10	25	10	
Apply	20	70	20	70	70	30	70	
Analyse	20	20	10	20	20	15	20	
Evaluate	-	-	-	-	-	-	-	
Create	-	-	-	-	-	-	-	
Total	60	100	60	100	100	100	100	

Syllabus									
	K.S.	Rangasam			gy – Autor	nomous R2	025		
				-VLSI Des	•				
					stem Desig Credit			.I	
Semester		Hours/Wee	P P	Total Hours	Credit				
III	1 3	Т 0	2	75	4	CA 50	ES 50	Total 100	
Introducti		0		10			30	100	
Overview -	-MEMS and rinciple of M					/licroelectro	nics -	[9]	
Materials Substrate Mechanica	for Microsy and Wafer al Properties con Piezo F	stems -Single Cr s-Silicon C	ystal Silico Compounds	n Wafer Fo -Sio2, SiC,	ormation- Id Si3N4 and	d Polycrysta	alline	[9]	
Photolitho	tem Fabrica graphy — F I Vapor Dep	Photo Res	ist- Ion Imp				on — CVD	[9]	
Micro Sys Design Co Selection Application Telecomn	tem Design onsideration of Material on of Micro nunication.	s- Process s-Manufac	Design- Number	Mask Layou cess - Sig	ut Design- nal Transd	Design Co uction-Pac	kaging –	[9]	
	n- Microser Chemical S							[9]	
Practical: 1. Design and Analysis of Capacitive Accelerometer 2. Estimation of Resistance change in SOI Piezo-Resistive Pressure Sensor 3. Study of IntelliSuite Software for the Design and Fabrication Process of MEMS devices 4. Design and Analysis of Piezoresistive Accelerometer using Coventor Ware Software. 5. Simulation of Microsensors						[30]			
				Total Hou	rs: (Lecture	- 45; Pract	tical - 30)	75	
	(s): Ran Hus, "M y & Sons, 2		rosystems [Design, Mar	nufacture an	d Nanoscal	e engineerir	ng", John	
Devi	nW.Gardne ces", John \			ama O.Awa	ıdel Karim, "	Microsensc	ors MEMS a	nd Smart	
Reference						20.10			
2. Step	ng Liu, "Fou hen D Senti	uria, "Micro	system Des	ign", Spring	er Publication	on, 2000.	ıbliober 200)E	
₁ Tho	es J.Allen, " mas M.Adar nger,2010.								

Chairman
Chairman
CHAIRMAN BOARD OF STUDIES
Department of ECE

S. No.	Tau!aa	
5. NO.	Topics	
1.0	Introduction	1
1.1	Overview	1
1.2	MEMS	1
1.3	Microsystems	1
1.4	Micro System Products	1
1.5	Microelectronics	1
1.6	Compare Microelectronics and Microsystems	1
1.7	Working Principle of Microsystems	1
1.8	Micro Actuation Techniques	1
1.9	Applications of MEMS	1
2.0	Materials for Microsystems	
2.1	Substrate and Wafer	1
2.2	Single Crystal Silicon Wafer Formation	1
2.3	Ideal Substrates	1
2.4	Mechanical Properties	1
2.5	Silicon Compounds	1
2.6	Sio2, SiC, Si3N4 and Polycrystalline Silicon	1
2.7	Silicon Piezo Resistors	1
2.8	Gallium Arsenide, Quartz	1
2.9	Piezoelectric Crystals, Polymers	1
3.0	Micro System Fabrication Process	
3.1	Photolithography	1
3.2	Photo Resist	1
3.3	Ion Implantation	1
3.4	Diffusion	1
3.5	Oxidation	1
3.6	CVD	1
3.7	Physical Vapor Deposition	1
3.8	Deposition by Epitaxy	1
3.9	Etching Process	1
4.0	Micro System Design	1
4.1	Design Considerations	1
4.2	Process Design	1
4.3	Mask Layout Design	1
4.4	Design Constraints, Selection of Materials	1
4.5	Manufacturing Process	1
4.6	Signal Transduction, packaging	1
4.7	Application of Micro System in Automotive Industry	1
4.8	Biomedical	1
4.9	Aerospace, Telecommunication.	1

Chairman
CHAIRMAN 85 AFT OF STUDIES
Department of ECE

5.0	Micro Sensors	
5.1	Introduction	1
5.2	Microsensors	1
5.3	Biomedical Sensors	1
5.4	Pressure Sensors	1
5.5	Thermal Sensors	1
5.6	Chemical Sensors	1
5.7	Optical Sensors	1
5.8	Micro actuation	1
5.9	MEMS with Actuators	1
Practic	al:	
1.	Design and Analysis of Capacitive Accelerometer	6
2.	Estimation of Resistance Change in SOI Piezo-Resistive Pressure Sensor	6
3.	Study of IntelliSuite Software for the Design and Fabrication Process of MEMS devices	6
4.	Design and Analysis of Piezoresistive Accelerometer using Coventor Ware Software.	6
5.	Simulation of Microsensors	6

Course Designer(s)

 $\hbox{Dr. Baranidharan} \hbox{\mathbb{Z}-$\underline{baranidharan@ksrct.ac.in}$}$

70 PVL 3P1	Project Work - Phase I	Category	L	T	Ρ	Credit
701 42 31 1	1 Toject Work - 1 Hase 1	CG	0	0	12	6

- To impart practical knowledge to the students and also to make them to carry out the technical procedures in their project work.
- To provide an exposure to the students to refer, read and review the research articles, journals and conference proceedings relevant to their project work and placing this as their beginning stage for their final presentation
- Independently carry out research / investigation and development work to solve practical problems in the field of VLSI
- Write and present a substantial technical report / document in the field of VLSI
- Demonstrate the Research findings the VLSI area

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Survey the relevant literature such as books, national/international referred journals and contact resource persons for the selected topic of research.	Apply
CO2	Use different experimental techniques/different software/ Computational / analytical tools.	Apply
CO3	Design and develop an experimental set up/ equipment/test rig.	Apply
CO4	Conduct tests on existing setups/equipment's and draws logical conclusions from the results after analyzing them.	Apply
CO5	Work in a research environment or in an industrial environment	Apply

Mapping with Programme Outcomes

COs	POs									
COS	1	2	3	4	5	6				
CO1	3	3	3	3	3	3				
CO2	3	3	3	3	3	3				
CO3	3	3	3	3	3	3				
CO4	3	3	3	3	3	3				
CO5	3	3	3	3	3	3				
3 - St	rong; 2	2 - Med	lium; 1	- Som	е					

Assessment Pattern

(Internal Assessment: 100 Marks)

Review I (R1)			Review II (R2)		Review III (R3)				
Literature Survey	Topic Identification & Justification	Work Plan	Approach	Conclusion	Demo- Existing System	Presentation	Report	Total	Internal
10	10	10	20	20	10	10	10	100	100

K.S.Rangasamy College of Technology – Autonomous R2025									
M.E-VLSI Design									
70 PVL 3P1 - Project Work - Phase I									
Semester	Hours/Week			Total	Credit	Ma	ximum Ma	rks	
Semester	L	Т	Р	Hrs	С	CA	ES	Total	
III	0	0	12	180	6	100	-	100	

Methodology:

- Project should be selected based on an IEEE paper which would be base paper
- The paper has to be implemented fully
- Modification has to be proposed on the base paper
- Report has to be prepared by the students as per the format
- Every week a report on the progress of the project has to be submitted (Friday/Saturday) by the student with the supervisor's signature
- Three reviews will be conducted by a committee of minimum three members one of which should be the guide
- Each review has to be evaluated for 100 marks
- Attendance is compulsory for all reviews. If a student fails to attend the review for some valid reason with proper intimation, one or more chance may be given, else review mark will be zero
- Internal evaluation has to be done for 100 marks
- 1. Dr.C.Rajasekaran rajasekaran@ksrct.ac.in
- 2. Dr. K.B.Jayanthi jayanthikb@ksrct.ac.in

CHAIRMAN BOARD OF STUDIES

K.S. RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215 (An Autonomous Institution affiliated to Anna University)

M.E. / M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted in 2025-2026)

FOURTH SEMESTER

S.No.	Course Code	Name of the	Duration of	Weightage of Marks			Minimum M for Pass in Semeste Exam	End			
3.140.		Course	Internal Exam	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total			
	PRACTICAL										
1.	70 PVL 4P1	Project Work - Phase II	3	60	40	100	45	100			

^{*} CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

^{**} End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 40 marks for project End semester Examinations.

70 PVL 4P1	Project Work - Phase II	Category	L	T	Р	Credit
701 42 41 1	1 Toject Work - 1 Hase II	CG	0	0	24	12

- To impart practical knowledge to the students and also to make them to carry out the technical procedures in their project work.
- To provide an exposure to the students to refer, read and review the research articles, journals and conference proceedings relevant to their project work and placing this as their beginning stage for their final presentation
- Independently carry out research / investigation and development work to solve practical problems in the field of VLSI
- Write and present a substantial technical report / document in the field of VLSI
- Demonstrate the Research findings the VLSI area

Pre-requisites

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Develop attitude of lifelong learning and interpersonal skills to deal with people working in diversified fields.	Apply
CO2	Synthesize knowledge and skills previously gained and apply to an indepth study and execution of new technical problems in the area of VLSI.	Apply
CO3	Define specification, adopt new VLSI methodologies and analyze to produce a suitable research design and justify the design.	Apply
CO4	Demonstrate the research findings through hardware and software tools.	Apply
CO5	Present the findings of their technical solution in a written report and Publish the work in reputed journals and International Conferences.	Apply

Mapping with Programme Outcomes

COs	POs									
COS	1	2	3	4	5	6				
CO1	3	3	3	3	3	3				
CO2	3	3	3	3	3	3				
CO3	3	3	3	3	3	3				
CO4	3	3	3	3	3	3				
CO5	3	3	3	3	3	3				
3 - St	rong; 2	2 - Med	lium; 1	- Som	е					

Assessment Pattern

(Internal Assessment: 60 Marks + End Semester Examination: 40 Marks)

	End Semester				
Items	Review 1	Review 2	Review 3	Publication*	(40)
Marks	5	10	15	30	40
		40			

K.S.Rangasamy College of Technology – Autonomous R2025										
M.E-VLSI Design										
70 PVL 4P2 - Project Work - Phase II										
Samaatar	ŀ	Hours/Week			Credit	Ma	ximum Ma	rks		
Semester	L	Т	Р	Hrs	С	CA	ES	Total		
IV	0	0	24	360	12	60	40	100		

Methodology:

- 1. The modification proposed in Phase I has to be implemented
- 2. Three reviews will be conducted by a committee of minimum three members one of which will be the guide
- 3. Each review has to be evaluated for 100 marks
- 4. Attendance is compulsory for all reviews. If a student fails to attend the review for some valid reason with proper intimation, one or more chance may be given, else review mark will be zero
- 5. They should publish the paper preferably in the journals/conferences
- 6. Final review will be done by the committee that consists of minimum three members one of which should be the guide (including one external expert examiner)
- 7. The report should be submitted by the students at the end of May

Course Designer(s)

- 1. Dr.C.Rajasekaran rajasekaran@ksrct.ac.in
- 2. Dr. K.B.Jayanthi jayanthikb@ksrct.ac.in